Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Exp Biol Med (Maywood) ; 249: 10021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463391

RESUMO

The presence of inhibitory immune cells and difficulty in generating activated effector T cells remain obstacles to development of effective cancer vaccines. We designed a vaccine regimen combining human telomerase reverse transcriptase (hTERT) peptides with concomitant therapies targeting regulatory T cells (Tregs) and cyclooxygenase-2 (COX2)-mediated immunosuppression. This Phase 1 trial combined an hTERT-derived 7-peptide library, selected to ensure presentation by both HLA class-I and class-II in 90% of patients, with oral low-dose cyclophosphamide (to modulate Tregs) and the COX2 inhibitor celecoxib. Adjuvants were Montanide and topical TLR-7 agonist, to optimise antigen presentation. The primary objective was determination of the safety and tolerability of this combination therapy, with anti-cancer activity, immune response and detection of antigen-specific T cells as additional endpoints. Twenty-nine patients with advanced solid tumours were treated. All were multiply-pretreated, and the majority had either colorectal or prostate cancer. The most common adverse events were injection-site reactions, fatigue and nausea. Median progression-free survival was 9 weeks, with no complete or partial responses, but 24% remained progression-free for ≥6 months. Immunophenotyping showed post-vaccination expansion of CD4+ and CD8+ T cells with effector phenotypes. The in vitro re-challenge of T cells with hTERT peptides, TCR sequencing, and TCR similarity index analysis demonstrated the expansion following vaccination of oligoclonal T cells with specificity for hTERT. However, a population of exhausted PD-1+ cytotoxic T cells was also expanded in vaccinated patients. This vaccine combination regimen was safe and associated with antigen-specific immunological responses. Clinical activity could be improved in future by combination with anti-PD1 checkpoint inhibition to address the emergence of an exhausted T cell population.


Assuntos
Vacinas Anticâncer , Neoplasias da Próstata , Telomerase , Masculino , Humanos , Linfócitos T CD8-Positivos , Telomerase/genética , Telomerase/metabolismo , Vacinação , Peptídeos , Vacinas Anticâncer/efeitos adversos , Receptores de Antígenos de Linfócitos T
2.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37321663

RESUMO

BACKGROUND: Locally advanced/recurrent head and neck squamous cell carcinoma (HNSCC) is associated with significant morbidity and mortality. To target upregulated ErbB dimer expression in this cancer, we developed an autologous CD28-based chimeric antigen receptor T-cell (CAR-T) approach named T4 immunotherapy. Patient-derived T-cells are engineered by retroviral transduction to coexpress a panErbB-specific CAR called T1E28ζ and an IL-4-responsive chimeric cytokine receptor, 4αß, which allows IL-4-mediated enrichment of transduced cells during manufacture. These cells elicit preclinical antitumor activity against HNSCC and other carcinomas. In this trial, we used intratumoral delivery to mitigate significant clinical risk of on-target off-tumor toxicity owing to low-level ErbB expression in healthy tissues. METHODS: We undertook a phase 1 dose-escalation 3+3 trial of intratumoral T4 immunotherapy in HNSCC (NCT01818323). CAR T-cell batches were manufactured from 40 to 130 mL of whole blood using a 2-week semiclosed process. A single CAR T-cell treatment, formulated as a fresh product in 1-4 mL of medium, was injected into one or more target lesions. Dose of CAR T-cells was escalated in 5 cohorts from 1×107-1×109 T4+ T-cells, administered without prior lymphodepletion. RESULTS: Despite baseline lymphopenia in most enrolled subjects, the target cell dose was successfully manufactured in all cases, yielding up to 7.5 billion T-cells (67.5±11.8% transduced), without any batch failures. Treatment-related adverse events were all grade 2 or less, with no dose-limiting toxicities (Common Terminology Criteria for Adverse Events V.4.0). Frequent treatment-related adverse events were tumor swelling, pain, pyrexias, chills, and fatigue. There was no evidence of leakage of T4+ T-cells into the circulation following intratumoral delivery, and injection of radiolabeled cells demonstrated intratumoral persistence. Despite rapid progression at trial entry, stabilization of disease (Response Evaluation Criteria in Solid Tumors V.1.1) was observed in 9 of 15 subjects (60%) at 6 weeks post-CAR T-cell administration. Subsequent treatment with pembrolizumab and T-VEC oncolytic virus achieved a rapid complete clinical response in one subject, which was durable for over 3 years. Median overall survival was greater than for historical controls. Disease stabilization was associated with the administration of an immunophenotypically fitter, less exhausted, T4 CAR T-cell product. CONCLUSIONS: These data demonstrate the safe intratumoral administration of T4 immunotherapy in advanced HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Receptores de Antígenos Quiméricos , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Interleucina-4 , Recidiva Local de Neoplasia , Imunoterapia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
3.
Cancers (Basel) ; 15(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37046649

RESUMO

The interactions between Acute Myeloid Leukaemia (AML) leukemic stem cells and the bone marrow (BM) microenvironment play a critical role during AML progression and resistance to drug treatments. Therefore, the identification of novel therapies requires drug-screening methods using in vitro co-culture models that closely recreate the cytoprotective BM setting. We have developed a new fluorescence-based in vitro co-culture system scalable to high throughput for measuring the concomitant effect of drugs on AML cells and the cytoprotective BM microenvironment. eGFP-expressing AML cells are co-cultured in direct contact with mCherry-expressing BM stromal cells for the accurate assessment of proliferation, viability, and signaling in both cell types. This model identified several efficacious compounds that overcome BM stroma-mediated drug resistance against daunorubicin, including the chromosome region maintenance 1 (CRM1/XPO1) inhibitor KPT-330. In silico analysis of genes co-expressed with CRM1, combined with in vitro experiments using our new methodology, also indicates that the combination of KPT-330 with the AURKA pharmacological inhibitor alisertib circumvents the cytoprotection of AML cells mediated by the BM stroma. This new experimental model and analysis provide a more precise screening method for developing improved therapeutics targeting AML cells within the cytoprotective BM microenvironment.

4.
Cancers (Basel) ; 15(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672411

RESUMO

Osteoclasts contribute to bone marrow (BM)-mediated drug resistance in multiple myeloma (MM) by providing cytoprotective cues. Additionally, 80% of patients develop osteolytic lesions, which is a major cause of morbidity in MM. Although targeting osteoclast function is critical to improve MM therapies, pre-clinical studies rarely consider overcoming osteoclast-mediated cytoprotection within the selection criteria of drug candidates. We have performed a drug screening and identified PI3K as a key regulator of a signalling node associated with resistance to dexamethasone lenalidomide, pomalidomide, and bortezomib mediated by osteoclasts and BM fibroblastic stromal cells, which was blocked by the pan-PI3K Class IA inhibitor GDC-0941. Additionally, GDC-0941 repressed the maturation of osteoclasts derived from MM patients and disrupted the organisation of the F-actin cytoskeleton in sealing zones required for bone degradation, correlating with decreased bone resorption by osteoclasts. In vivo, GDC-0941 improved the efficacy of dexamethasone against MM in the syngeneic GFP-5T33/C57-Rawji mouse model. Taken together, our results indicate that GDC-0941 in combination with currently used therapeutic agents could effectively kill MM cells in the presence of the cytoprotective BM microenvironment while inhibiting bone resorption by osteoclasts. These data support investigating GDC-0941 in combination with currently used therapeutic drugs for MM patients with active bone disease.

5.
Nat Med ; 27(10): 1797-1805, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34642489

RESUMO

Chimeric antigen receptor (CAR) T cells targeting CD19 or CD22 have shown remarkable activity in B cell acute lymphoblastic leukemia (B-ALL). The major cause of treatment failure is antigen downregulation or loss. Dual antigen targeting could potentially prevent this, but the clinical safety and efficacy of CAR T cells targeting both CD19 and CD22 remain unclear. We conducted a phase 1 trial in pediatric and young adult patients with relapsed or refractory B-ALL (n = 15) to test AUTO3, autologous transduced T cells expressing both anti-CD19 and anti-CD22 CARs (AMELIA trial, EUDRA CT 2016-004680-39). The primary endpoints were the incidence of grade 3-5 toxicity in the dose-limiting toxicity period and the frequency of dose-limiting toxicities. Secondary endpoints included the rate of morphological remission (complete response or complete response with incomplete bone marrow recovery) with minimal residual disease-negative response, as well as the frequency and severity of adverse events, expansion and persistence of AUTO3, duration of B cell aplasia, and overall and event-free survival. The study endpoints were met. AUTO3 showed a favorable safety profile, with no dose-limiting toxicities or cases of AUTO3-related severe cytokine release syndrome or neurotoxicity reported. At 1 month after treatment the remission rate (that is, complete response or complete response with incomplete bone marrow recovery) was 86% (13 of 15 patients). The 1 year overall and event-free survival rates were 60% and 32%, respectively. Relapses were probably due to limited long-term AUTO3 persistence. Strategies to improve CAR T cell persistence are needed to fully realize the potential of dual targeting CAR T cell therapy in B-ALL.


Assuntos
Antígenos CD19/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Receptores de Antígenos Quiméricos/administração & dosagem , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Adolescente , Adulto , Antígenos CD19/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/tendências , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/tendências , Lactente , Masculino , Pediatria , Intervalo Livre de Progressão , Receptores de Antígenos Quiméricos/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Adulto Jovem
6.
Cells ; 10(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34359966

RESUMO

Adoptive cancer immunotherapy using chimeric antigen receptor (CAR) engineered T-cells holds great promise, although several obstacles hinder the efficient generation of cell products under good manufacturing practice (GMP). Patients are often immune compromised, rendering it challenging to produce sufficient numbers of gene-modified cells. Manufacturing protocols are labour intensive and frequently involve one or more open processing steps, leading to increased risk of contamination. We set out to develop a simplified process to generate autologous gamma retrovirus-transduced T-cells for clinical evaluation in patients with head and neck cancer. T-cells were engineered to co-express a panErbB-specific CAR (T1E28z) and a chimeric cytokine receptor (4αß) that permits their selective expansion in response to interleukin (IL)-4. Using peripheral blood as starting material, sterile culture procedures were conducted in gas-permeable bags under static conditions. Pre-aliquoted medium and cytokines, bespoke connector devices and sterile welding/sealing were used to maximise the use of closed manufacturing steps. Reproducible IL-4-dependent expansion and enrichment of CAR-engineered T-cells under GMP was achieved, both from patients and healthy donors. We also describe the development and approach taken to validate a panel of monitoring and critical release assays, which provide objective data on cell product quality.


Assuntos
Citocinas/metabolismo , Interleucina-4/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Transdução Genética
8.
J Clin Oncol ; 39(30): 3352-3363, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34464155

RESUMO

PURPOSE: Prognosis for adult B-cell acute lymphoblastic leukemia (B-ALL) is poor, and there are currently no licensed CD19 chimeric antigen receptor (CAR) therapeutics. We developed a novel second-generation CD19-CAR (CAT19-41BB-Z) with a fast off rate, designed for more physiologic T-cell activation to reduce toxicity and improve engraftment. We describe the multicenter phase I ALLCAR19 (NCT02935257) study of autologous CAT19-41BB-Z CAR T cells (AUTO1) in relapsed or refractory (r/r) adult B-ALL. METHODS: Patients age ≥ 16 years with r/r B-ALL were eligible. Primary outcomes were toxicity and manufacturing feasibility. Secondary outcomes were depth of response at 1 and 3 months, persistence of CAR-T, incidence and duration of hypogammaglobulinemia and B-cell aplasia, and event-free survival and overall survival at 1 and 2 years. RESULTS: Twenty-five patients were leukapheresed, 24 products were manufactured, and 20 patients were infused with AUTO1. The median age was 41.5 years; 25% had prior blinatumomab, 50% prior inotuzumab ozogamicin, and 65% prior allogeneic stem-cell transplantation. At the time of preconditioning, 45% had ≥ 50% bone marrow blasts. No patients experienced ≥ grade 3 cytokine release syndrome; 3 of 20 (15%) experienced grade 3 neurotoxicity that resolved to ≤ grade 1 within 72 hours with steroids. Seventeen of 20 (85%) achieved minimal residual disease-negative complete response at month 1, and 3 of 17 underwent allogeneic stem-cell transplantation while in remission. The event-free survival at 6 and 12 months was 68.3% (42.4%-84.4%) and 48.3% (23.1%-69.7%), respectively. High-level expansion (Cmax 127,152 copies/µg genomic DNA) and durable CAR-T persistence were observed with B-cell aplasia ongoing in 15 of 20 patients at last follow-up. CONCLUSION: AUTO1 demonstrates a tolerable safety profile, high remission rates, and excellent persistence in r/r adult B-ALL. Preliminary data support further development of AUTO1 as a stand-alone treatment for r/r adult B-ALL.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva/efeitos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Adolescente , Adulto , Agamaglobulinemia/etiologia , Linfócitos B/patologia , Medula Óssea/patologia , Síndrome da Liberação de Citocina/etiologia , Feminino , Doença Enxerto-Hospedeiro/etiologia , Humanos , Infecções/etiologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/etiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Intervalo Livre de Progressão , Recidiva , Retratamento , Taxa de Sobrevida , Transplante Autólogo/efeitos adversos , Resultado do Tratamento , Adulto Jovem
10.
Mol Ther Methods Clin Dev ; 21: 621-641, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34095345

RESUMO

Acute myeloid leukemia (AML) patients with minimal residual disease and receiving allogeneic hematopoietic stem cell transplantation (HCT) have poor survival. Adoptive administration of dendritic cells (DCs) presenting the Wilms tumor protein 1 (WT1) leukemia-associated antigen can potentially stimulate de novo T and B cell development to harness the graft-versus-leukemia (GvL) effect after HCT. We established a simple and fast genetic modification of monocytes for simultaneous lentiviral expression of a truncated WT1 antigen (tWT1), granulocyte macrophage-colony-stimulating factor (GM-CSF), and interferon (IFN)-α, promoting their self-differentiation into potent "induced DCs" (iDCtWT1). A tricistronic integrase-defective lentiviral vector produced under good manufacturing practice (GMP)-like conditions was validated. Transduction of CD14+ monocytes isolated from peripheral blood, cord blood, and leukapheresis material effectively induced their self-differentiation. CD34+ cell-transplanted Nod.Rag.Gamma (NRG)- and Nod.Scid.Gamma (NSG) mice expressing human leukocyte antigen (HLA)-A∗0201 (NSG-A2)-immunodeficient mice were immunized with autologous iDCtWT1. Both humanized mouse models showed improved development and maturation of human T and B cells in the absence of adverse effects. Toward clinical use, manufacturing of iDCtWT1 was up scaled and streamlined using the automated CliniMACS Prodigy system. Proof-of-concept clinical-scale runs were feasible, and the 38-h process enabled standardized production and high recovery of a cryopreserved cell product with the expected identity characteristics. These results advocate for clinical trials testing iDCtWT1 to boost GvL and eradicate leukemia.

11.
Sci Rep ; 11(1): 10538, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006907

RESUMO

Regulated cell proliferation is an effector mechanism of regeneration, whilst dysregulated cell proliferation is a feature of cancer. We have previously identified microRNA (miRNA) that regulate successful and failed human liver regeneration. We hypothesized that these regulators may directly modify tumor behavior. Here we show that inhibition of miRNAs -503 and -23a, alone or in combination, enhances tumor proliferation in hepatocyte and non-hepatocyte derived cancers in vitro, driving more aggressive tumor behavior in vivo. Inhibition of miRNA-152 caused induction of DNMT1, site-specific methylation with associated changes in gene expression and in vitro and in vivo growth inhibition. Enforced changes in expression of two miRNA recapitulating changes observed in failed regeneration led to complete growth inhibition of multi-lineage cancers in vivo. Our results indicate that regulation of regeneration and tumor aggressiveness are concordant and that miRNA-based inhibitors of regeneration may constitute a novel treatment strategy for human cancers.


Assuntos
Regeneração Hepática/genética , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Fígado/citologia , Fígado/metabolismo
12.
Clin Exp Immunol ; 205(2): 198-212, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33866541

RESUMO

Ageing dramatically affects number and function of both innate and adaptive arms of immune system, particularly T cell subsets, contributing to reduced vaccination efficacy, decreased resistance to infections and increased prevalence of cancer in older people. In the present paper, we analysed the age-related changes in the absolute number of lymphocytes in 214 Sicilian subjects, and in the percentages of T and natural killer (NK) cells in a subcohort of donors. We compared these results with the immunophenotype of the oldest living Italian supercentenarian (aged 111 years). The results were also sorted by gender. The correlation between number/percentage of cells and age in all individuals. and separately in males and females, was examined using a simple linear regression analysis. We did not record the increase in the rate of inversion of the CD4/CD8 ratio, frequently reported as being associated with ageing in literature. Our observation was the direct consequence of a flat average trend of CD4+ and CD8+ T cell percentages in ageing donors, even when gender differences were included. Our results also suggest that CD4+ and CD8+ subsets are not affected equally by age comparing females with males, and we speculated that gender may affect the response to cytomegalovirus (CMV) infection. The supercentenarian showed a unique immunophenotypic signature regarding the relative percentages of her T cell subsets, with CD4+ and CD8+ T cell percentages and CD4+ naive T cell values in line with those recorded for the octogenarian subjects. This suggests that the supercentenarian has a naive 'younger' T cell profile comparable to that of a >80-year-old female.


Assuntos
Envelhecimento/imunologia , Células Matadoras Naturais/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Relação CD4-CD8/métodos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citomegalovirus/imunologia , Infecções por Citomegalovirus/imunologia , Feminino , Identidade de Gênero , Humanos , Imunofenotipagem/métodos , Masculino , Pessoa de Meia-Idade , Sicília
13.
Front Immunol ; 11: 221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210954

RESUMO

Exosomes are nano vesicles from the larger family named Extracellular Vesicle (EV)s which are released by various cells including tumor cells, mast cells, dendritic cells, B lymphocytes, neurons, adipocytes, endothelial cells, and epithelial cells. They are considerable messengers that can exchange proteins and genetic materials between the cells. Within the past decade, Tumor derived exosomes (TEX) have been emerged as important mediators in cancer initiation, progression and metastasis as well as host immune suppression and drug resistance. Although tumor derived exosomes consist of tumor antigens and several Heat Shock Proteins such as HSP70 and HSP90 to stimulate immune response against tumor cells, they contain inhibitory molecules like Fas ligand (Fas-L), Transforming Growth Factor Beta (TGF-ß) and Prostaglandin E2 (PGE2) leading to decrease the cytotoxicity and establish immunosuppressive tumor microenvironment (TME). To bypass this problem and enhance immune response, some macromolecules such as miRNAs, HSPs and activatory ligands have been recognized as potent immune inducers that could be used as anti-tumor agents to construct a nano sized tumor vaccine. Here, we discussed emerging engineered exosomes as a novel therapeutic strategy and considered the associated challenges.


Assuntos
Vesículas Extracelulares/metabolismo , Imunoterapia/métodos , Neoplasias/metabolismo , Animais , Bioengenharia , Carcinogênese , Humanos , Tolerância Imunológica , Metástase Neoplásica , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral
14.
Am J Transplant ; 20(4): 1125-1136, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31715056

RESUMO

Regulatory T cells (Tregs) are a lymphocyte subset with intrinsic immunosuppressive properties that can be expanded in large numbers ex vivo and have been shown to prevent allograft rejection and promote tolerance in animal models. To investigate the safety, applicability, and biological activity of autologous Treg adoptive transfer in humans, we conducted an open-label, dose-escalation, Phase I clinical trial in liver transplantation. Patients were enrolled while awaiting liver transplantation or 6-12 months posttransplant. Circulating Tregs were isolated from blood or leukapheresis, expanded under good manufacturing practices (GMP) conditions, and administered intravenously at either 0.5-1 million Tregs/kg or 3-4.5 million Tregs/kg. The primary endpoint was the rate of dose- limiting toxicities occurring within 4 weeks of infusion. The applicability of the clinical protocol was poor unless patient recruitment was deferred until 6-12 months posttransplant. Thus, only 3 of the 17 patients who consented while awaiting liver transplantation were dosed. In contrast, all six patients who consented 6-12 months posttransplant received the cell infusion. Treg transfer was safe, transiently increased the pool of circulating Tregs and reduced anti-donor T cell responses. Our study opens the door to employing Treg immunotherapy to facilitate the reduction or complete discontinuation of immunosuppression following liver transplantation.


Assuntos
Transplante de Fígado , Linfócitos T Reguladores , Transferência Adotiva , Animais , Humanos , Terapia de Imunossupressão , Doadores de Tecidos
15.
Cancers (Basel) ; 11(11)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717548

RESUMO

Prothymosin α (proTα) and its C-terminal decapeptide proTα(100-109) were shown to pleiotropically enhance innate and adaptive immune responses. Their activities have been broadly studied in vitro, focusing primarily on the restoration of the deficient immunoreactivity of cancer patients' leukocytes. Previously, we showed that proTα and proTα(100-109) act as danger-associated molecular patterns (DAMPs), ligate Toll-like receptor-4, signal through TRIF- and MyD88-dependent pathways, promote the maturation of dendritic cells and elicit T-helper type 1 (Th1) immune responses in vitro, leading to the optimal priming of tumor antigen-reactive T-cell functions. Herein, we assessed their activity in a preclinical melanoma model. Immunocompetent mice bearing B16.F1 tumors were treated with two cycles of proTα or proTα(100-109) together with a B16.F1-derived peptide vaccine. Coadministration of proTα or proTα(100-109) and the peptide vaccine suppressed melanoma-cell proliferation, as evidenced by reduced tumor-growth rates. Higher melanoma infiltration by CD3+ T cells was observed, whereas ex vivo analysis of mouse total spleen cells verified the in vivo induction of melanoma-reactive cytotoxic responses. Additionally, increased levels of proinflammatory and Th1-type cytokines were detected in mouse serum. We propose that, in the presence of tumor antigens, DAMPs proTα and proTα(100-109) induce Th1-biased immune responses in vivo. Their adjuvant ability to orchestrate antitumor immunoreactivities can eventually be exploited therapeutically in humans.

16.
Front Immunol ; 10: 2247, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608061

RESUMO

Aging is accompanied by remodeling of the immune system. With time, this leads to a decline in immune efficacy, resulting in increased vulnerability to infectious diseases, diminished responses to vaccination, and a susceptibility to age-related inflammatory diseases. An age-associated immune alteration, extensively reported in previous studies, is the reduction in the number of peripheral blood naïve cells, with a relative increase in the frequency of memory cells. These two alterations, together with inflamm-aging, are considered the hallmarks of immunosenescence. Because aging is a plastic process, it is influenced by both nutritional and pharmacological interventions. Therefore, the role of nutrition and of immunomodulation in immunosenescence is discussed, due to the multifactorial influence on these hallmarks. The close connection between nutrition, intake of bioactive nutrients and supplements, immune function, and inflammation demonstrate the key role of dietary strategies as regulators of immune response and inflammatory status, hence as possible modulators of the rate of immunosenescence. In addition, potential options for therapeutic intervention are clarified. In particular, the use of interleukin-7 as growth factor for naïve T cells, the function of checkpoint inhibitors in improving T cell responses during aging and, the potential of drugs that inhibit mitogen-activated protein kinases and their interaction with nutrient signaling pathways are discussed. Finally, it is suggested that the inclusion of appropriate combinations of toll-like receptor agonists may enhance the efficacy of vaccination in older adults.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Memória Imunológica/imunologia , Imunossenescência/imunologia , Inflamação/imunologia , Linfócitos T/imunologia , Idoso , Contagem de Células , Células-Tronco Hematopoéticas/citologia , Humanos , Interleucina-7/imunologia , Interleucina-7/metabolismo , Estado Nutricional , Linfócitos T/metabolismo
17.
Nat Med ; 25(9): 1408-1414, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31477906

RESUMO

Chimeric antigen receptor (CAR)-modified T cells targeting CD19 demonstrate unparalleled responses in relapsed/refractory acute lymphoblastic leukemia (ALL)1-5, but toxicity, including cytokine-release syndrome (CRS) and neurotoxicity, limits broader application. Moreover, 40-60% of patients relapse owing to poor CAR T cell persistence or emergence of CD19- clones. Some factors, including the choice of single-chain spacer6 and extracellular7 and costimulatory domains8, have a profound effect on CAR T cell function and persistence. However, little is known about the impact of CAR binding affinity. There is evidence of a ceiling above which increased immunoreceptor affinity may adversely affect T cell responses9-11. We generated a novel CD19 CAR (CAT) with a lower affinity than FMC63, the high-affinity binder used in many clinical studies1-4. CAT CAR T cells showed increased proliferation and cytotoxicity in vitro and had enhanced proliferative and in vivo antitumor activity compared with FMC63 CAR T cells. In a clinical study (CARPALL, NCT02443831 ), 12/14 patients with relapsed/refractory pediatric B cell acute lymphoblastic leukemia treated with CAT CAR T cells achieved molecular remission. Persistence was demonstrated in 11 of 14 patients at last follow-up, with enhanced CAR T cell expansion compared with published data. Toxicity was low, with no severe CRS. One-year overall and event-free survival were 63% and 46%, respectively.


Assuntos
Antígenos CD19/administração & dosagem , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Receptores de Antígenos de Linfócitos T/imunologia , Adolescente , Antígenos CD19/genética , Antígenos CD19/imunologia , Criança , Pré-Escolar , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Recidiva , Linfócitos T/patologia , Sequenciamento do Exoma , Adulto Jovem
18.
Mol Ther Methods Clin Dev ; 13: 399-413, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31044143

RESUMO

Hematopoietic stem cell gene therapy is a promising therapeutic strategy for the treatment of neurological disorders, since transplanted gene-corrected cells can traffic to the brain, bypassing the blood-brain barrier, to deliver therapeutic protein to the CNS. We have developed this approach for the treatment of Mucopolysaccharidosis type IIIA (MPSIIIA), a devastating lysosomal storage disease that causes progressive cognitive decline, leading to death in early adulthood. In a previous pre-clinical proof-of-concept study, we demonstrated neurological correction of MPSIIIA utilizing hematopoietic stem cell gene therapy via a lentiviral vector encoding the SGSH gene. Prior to moving to clinical trial, we have undertaken further studies to evaluate the efficiency of gene transfer into human cells and also safety studies of biodistribution and genotoxicity. Here, we have optimized hCD34+ cell transduction with clinical grade SGSH vector to provide improved pharmacodynamics and cell viability and validated effective scale-up and cryopreservation to generate an investigational medicinal product. Utilizing a humanized NSG mouse model, we demonstrate effective engraftment and biodistribution, with no vector shedding or transmission to germline cells. SGSH vector genotoxicity assessment demonstrated low transformation potential, comparable to other lentiviral vectors in the clinic. This data establishes pre-clinical safety and efficacy of HSCGT for MPSIIIA.

19.
Blood Adv ; 2(22): 3177-3192, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482760

RESUMO

Engineered autologous acute myeloid leukemia (AML) cells present multiple leukemia-associated and patient-specific antigens and as such hold promise as immunotherapeutic vaccines. However, prior vaccines have not reliably induced effective antileukemic immunity, in part because AML blasts have immune inhibitory effects and lack expression of the critical costimulatory molecule CD80. To enhance induction of leukemia-specific cytolytic activity, 32Dp210 murine AML cells were engineered to express either CD80 alone, or the immunostimulatory cytokine interleukin-15 (IL-15) with its receptor α (IL-15Rα), or heterodimeric IL-15/IL-15Rα together with CD80 and tested as irradiated cell vaccines. IL-15 is a γc-chain cytokine, with unique properties suited to stimulating antitumor immunity, including stimulation of both natural killer and CD8+ memory T cells. Coexpression of IL-15 and IL-15Rα markedly increases IL-15 stability and secretion. Non-tumor-bearing mice vaccinated with irradiated 32Dp210-IL-15/IL-15Rα/CD80 and challenged with 32Dp210 leukemia had greater survival than did mice treated with 32Dp210-CD80 or 32Dp210-IL-15/IL-15Rα vaccines, whereas no unvaccinated mice inoculated with leukemia survived. In mice with established leukemia, treatment with 32Dp210-IL-15/IL-15Rα/CD80 vaccination stimulated unprecedented antileukemic immunity enabling 80% survival, an effect that was abrogated by anti-CD8 antibody-mediated depletion in vivo. Because, clinically, AML vaccines are administered as postremission therapy, we established a novel model in which mice with high leukemic burdens were treated with cytotoxic therapy to induce remission (<5% marrow blasts). Postremission vaccination with 32Dp210-IL-15/IL-15Rα/CD80 achieved 50% overall survival in these mice, whereas all unvaccinated mice achieving remission subsequently relapsed. These studies demonstrate that combined expression of IL-15/IL-15Rα and CD80 by syngeneic AML vaccines stimulates effective and long-lasting antileukemic immunity.


Assuntos
Antígeno B7-1/metabolismo , Vacinas Anticâncer/imunologia , Subunidade alfa de Receptor de Interleucina-15/metabolismo , Interleucina-15/metabolismo , Leucemia Mieloide Aguda/terapia , Animais , Antígeno B7-1/genética , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Interleucina-15/genética , Subunidade alfa de Receptor de Interleucina-15/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C3H , Neoplasia Residual , Taxa de Sobrevida , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transplante Homólogo
20.
Methods Mol Biol ; 1608: 343-370, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28695521

RESUMO

This chapter describes some of the techniques in use in our laboratories for the investigation of PARP inhibitors in clinical medicine. More specifically, we are involved in investigating the utility of PARP inhibitors in the treatment of hematopoietic malignancies. We are also actively investigating the properties of the PARP systems in cell biology. We begin the chapter with a very brief history of the invention and use of PARP inhibitors. We then explain the underlying logic of the use of PARP inhibitors either in combination with chemo- or radiotherapy or as single agents used alone. We then provide in full detail the protocols that we use to study PARP inhibitors in cell biology to identify patients that should be susceptible to PARP inhibitor treatment and to manage and investigate these patients throughout their treatment.


Assuntos
Adjuvantes Farmacêuticos/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Humanos , Leucemia/tratamento farmacológico , Leucemia/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA