Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37627607

RESUMO

Biofilm-dwelling cells endure adverse conditions, including oxidative imbalances. The NADH:quinone oxidoreductase enzyme WrbA has a crucial role in the mechanism of action of antibiofilm molecules such as ellagic and salicylic acids. This study aimed to exploit the potential of the WrbA scaffold as a valuable target for identifying antibiofilm compounds at non-lethal concentrations. A three-dimensional computational model, based on the published WrbA structure, was used to screen natural compounds from a virtual library of 800,000 compounds. Fisetin, morin, purpurogallin, NZ028, and NZ034, along with the reference compound ellagic acid, were selected. The antibiofilm effect of the molecules was tested at non-lethal concentrations evaluating the cell-adhesion of wild-type and WrbA-deprived Escherichia coli strains through fluorochrome-based microplate assays. It was shown that, except for NZ028, all of the selected molecules exhibited notable antibiofilm effects. Purpurogallin and NZ034 showed excellent antibiofilm performances at the lowest concentration of 0.5 µM, in line with ellagic acid. The observed loss of activity and the level of reactive oxygen species in the mutant strain, along with the correlation with terms contributing to the ligand-binding free energy on WrbA, strongly indicates the WrbA-dependency of purpurogallin and NZ034. Overall, the molecular target WrbA was successfully employed to identify active compounds at non-lethal concentrations, thus revealing, for the first time, the antibiofilm efficacy of purpurogallin and NZ034.

2.
Pharmaceutics ; 15(6)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37376205

RESUMO

Bacterial biofilm is a major contributor to the persistence of infection and the limited efficacy of antibiotics. Antibiofilm molecules that interfere with the biofilm lifestyle offer a valuable tool in fighting bacterial pathogens. Ellagic acid (EA) is a natural polyphenol that has shown attractive antibiofilm properties. However, its precise antibiofilm mode of action remains unknown. Experimental evidence links the NADH:quinone oxidoreductase enzyme WrbA to biofilm formation, stress response, and pathogen virulence. Moreover, WrbA has demonstrated interactions with antibiofilm molecules, suggesting its role in redox and biofilm modulation. This work aims to provide mechanistic insights into the antibiofilm mode of action of EA utilizing computational studies, biophysical measurements, enzyme inhibition studies on WrbA, and biofilm and reactive oxygen species assays exploiting a WrbA-deprived mutant strain of Escherichia coli. Our research efforts led us to propose that the antibiofilm mode of action of EA stems from its ability to perturb the bacterial redox homeostasis driven by WrbA. These findings shed new light on the antibiofilm properties of EA and could lead to the development of more effective treatments for biofilm-related infections.

3.
Molecules ; 28(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175271

RESUMO

Elagolix sodium salt is the first marketed orally active non-peptide gonadotropin-releasing hormone receptor antagonist (GnRHR-ant) for the management of hormone dependent diseases, such as endometriosis and uterine fibroids. Despite its presence on the market since 2018, a thorough NMR analysis of this drug, together with its synthetic intermediates, is still lacking. Hence, with the aim of filling this literature gap, we here performed a detailed NMR investigation, which allowed the complete assignment of the 1H, 13C, and 15N NMR signals. These data allowed, with the support of the conformational analysis, the determination of the stereochemical profile of the two atropisomers, detectable in solution. Moreover, these latter were also detected by means of cellulose-based chiral HPLC, starting from a sample prepared through an implemented synthetic procedure with respect to the reported ones. Overall, these results contribute to further understanding of the topic of atropisomerism in drug discovery and could be applied in the design of safe and stable analogs, endowed with improved target selectivity.


Assuntos
Endometriose , Hormônio Liberador de Gonadotropina , Feminino , Humanos , Hidrocarbonetos Fluorados , Pirimidinas , Cloreto de Sódio , Cloreto de Sódio na Dieta , Álcoois Graxos
4.
J Med Chem ; 64(18): 13439-13450, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34510899

RESUMO

During inflammatory reactions, the production and release of chemotactic factors guide the recruitment of selective leukocyte subpopulations. The alarmin HMGB1 and the chemokine CXCL12, both released in the microenvironment, can form a heterocomplex, which exclusively acts on the chemokine receptor CXCR4, enhancing cell migration, and in some pathological conditions such as rheumatoid arthritis exacerbates the immune response. An excessive cell influx at the inflammatory site can be diminished by disrupting the heterocomplex. Here, we report the computationally driven identification of the first peptide (HBP08) binding HMGB1 and selectively inhibiting the activity of the CXCL12/HMGB1 heterocomplex. Furthermore, HBP08 binds HMGB1 with the highest affinity reported so far (Kd of 0.8 ± 0.4 µM). The identification of this peptide represents an important step toward the development of innovative pharmacological tools for the treatment of severe chronic inflammatory conditions characterized by an uncontrolled immune response.


Assuntos
Quimiocina CXCL12/antagonistas & inibidores , Proteína HMGB1/antagonistas & inibidores , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Proteína HMGB1/metabolismo , Humanos , Camundongos , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Receptores CXCR4/metabolismo
5.
Bioorg Chem ; 115: 105258, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34392176

RESUMO

Hsp90 (i.e., Heat shock protein 90) is a well-established therapeutic target for several diseases, ranging from misfolding-related disfunctions to cancer. In this framework, we have developed in recent years a family of benzofuran compounds that act as Hsp90 allosteric modulators. Such molecules can interfere with the stability of some relevant Hsp90 client oncoproteins, showing a low µM cytotoxic activity in vitro in cancer cell lines. Here we identify the target profile of these chemical probes by means of chemical proteomics, which established MDH2 (mitochondrial malate dehydrogenase) as an additional relevant cellular target that might help elucidate the molecular mechanism of their citotoxicity. Western blotting, DARTS (i.e., Drug Affinity Responsive Target Stability) and enzymatic assays data confirmed a dose-dependent interaction of MDH2 with several members of the benzofuran Hsp90 modulators family and a computational model allowed to interpret the observed interactions.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Malato Desidrogenase/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Antineoplásicos/química , Benzofuranos/química , Relação Dose-Resposta a Droga , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Malato Desidrogenase/metabolismo , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
6.
DNA Cell Biol ; 39(2): 226-234, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31895584

RESUMO

Hunter's syndrome (mucopolysaccharidosis type II) is a rare X-linked lysosomal storage disorder caused by mutations in the iduronate-2-sulfatase (IDS) gene. Motivated by the case of a child affected by this syndrome, we compared the intracellular fate of wild-type IDS (IDSWT) and four nonsense mutations of IDS (IDSL482X, IDSY452X, IDSR443X, and IDSW337X) generating progressively shorter forms of IDS associated with mild to severe forms of the disease. Our analyses revealed formylation of all forms of IDS at cysteine 84, which is a prerequisite for enzymatic activity. After formylation, IDSWT was transported within lysosomes, where it was processed in the mature form of the enzyme. The length of disease-causing deletions correlated with gravity of the folding and transport phenotype, which was anticipated by molecular dynamics analyses. The shortest form of IDS, IDSW337X, was retained in the endoplasmic reticulum (ER) and degraded by the ubiquitin-proteasome system. IDSR443X, IDSY452X, and IDSL482X passed ER quality control and were transported to the lysosomes, but failed lysosomal quality control, resulting in their rapid clearance and in loss-of-function phenotype. Failure of ER quality control inspection is an established cause of loss of function observed in protein misfolding diseases. Our data reveal that fulfillment of ER requirements might not be sufficient, highlight lysosomal quality control as the distal station to control lysosomal enzymes fitness and pave the way for alternative therapeutic interventions.


Assuntos
Códon sem Sentido/genética , Retículo Endoplasmático/genética , Iduronato Sulfatase/genética , Lisossomos/metabolismo , Mucopolissacaridose II/genética , Animais , Retículo Endoplasmático/metabolismo , Glicoproteínas/genética , Humanos , Camundongos , Mucopolissacaridose II/tratamento farmacológico , Mutação/genética
7.
Int J Mol Sci ; 20(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003530

RESUMO

The mosquito-borne viral disease caused by the Dengue virus is an expanding global threat. Diagnosis in low-resource-settings and epidemiological surveillance urgently requires new immunoprobes for serological tests. Structure-based epitope prediction is an efficient method to design diagnostic peptidic probes able to reveal specific antibodies elicited in response to infections in patients' sera. In this study, we focused on the Dengue viral envelope protein (E); computational analyses ranging from extensive Molecular Dynamics (MD) simulations and energy-decomposition-based prediction of potentially immunoreactive regions identified putative epitope sequences. Interestingly, one such epitope showed internal dynamic and energetic properties markedly different from those of other predicted sequences. The epitope was thus synthesized as a linear peptide, modified for chemoselective immobilization on microarrays and used in a serological assay to discriminate Dengue-infected individuals from healthy controls. The synthetic epitope probe showed a diagnostic performance comparable to that of the full antigen in terms of specificity and sensitivity. Given the high level of sequence identity among different flaviviruses, the epitope was immune-reactive towards Zika-infected sera as well. The results are discussed in the context of the quest for new possible structure-dynamics-based rules for the prediction of the immunoreactivity of selected antigenic regions with potential pan-flavivirus immunodiagnostic capacity.


Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Epitopos/imunologia , Proteínas do Envelope Viral/imunologia , Anticorpos Antivirais , Biologia Computacional , Reações Cruzadas/imunologia , Dengue/sangue , Dengue/virologia , Vírus da Dengue/patogenicidade , Mapeamento de Epitopos , Humanos , Simulação de Dinâmica Molecular , Peptídeos/imunologia , Zika virus/imunologia , Zika virus/patogenicidade , Infecção por Zika virus/sangue , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA