Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1352827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38910883

RESUMO

Artemisinin, artemether, artesunate, and dihydroartemisinin are renowned for their antimalarial potential. The current study aims to repurpose the above-mentioned artemisinic compounds (ACs) by conducting an intercomparison to evaluate their antiinflammatory potential (AIP). In order to develop potential candidates for the evaluation of AIP of ACs (50 and 100 mg/kg BW), carbon tetrachloride (1ml/kg body weight (BW)) was administered intraperitoneally to BALB/c mice. Alterations in animal behavior were assessed weekly through tail suspension test, force swim test, open field test, Y-maze test, inverted screen analysis, and weight lifting test. Aberrations in hematological, serological, endogenous antioxidants, and oxidative stress marker profiles were assessed in all twelve groups. Histological alterations were read using hematoxylin and eosin staining. Levels of inflammatory markers including nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNF-α), and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), were determined using immunohistochemical analysis (IHCA). Antioxidant markers i.e., nuclear factor erythroid-2-related factor (Nrf-2) and thioredoxin (TRX) were also quantified through IHCA. Comet assay was performed to quantify DNA damage. Oral administration of ACs to mice significantly alleviated the carbon tetrachloride induced inflammation in comparison with silymarin. Reduced levels of several inflammatory markers including nitric oxide, thiobarbituric acid reactive substances, interleukin-1 beta, NF-κB, TNF-α, and NLRP3, underscore the substantial AIP of ACs. IHCA depicted the revitalized percent relative expression of Nrf-2 and TRX in groups treated with ACs. Behavioral analysis revealed that ACs-treated groups significantly (p<0.05) attenuated the memory deficit, anxiety, and depressive-like behavior. Moreover, histopathological, hematological, serological, and endogenous antioxidant profiles indicated substantial AIP of ACs. Findings of comet assay further bolstered the compelling evidence as DNA damage was significantly (p<0.05) curbed down after ACs (100 mg/kg) treatment. All these outcomes implied that ACs exhibited AIP in a dose-dependent manner with maximal AIP imparted by artemisinin (100 mg/kg). This pre-clinical investigation avers the tremendous AIP of ACs targeting key molecular pathways. The current study divulges artemisinin as the most potent antiinflammatory agent among the tested compounds.

2.
Comput Biol Chem ; 111: 108116, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823360

RESUMO

Taste is crucial in driving food choice and preference. Umami is one of the basic tastes defined by characteristic deliciousness and mouthfulness that it imparts to foods. Identification of ingredients to enhance umami taste is of significant value to food industry. Various models have been shown to predict umami taste using feature encodings derived from traditional molecular descriptors such as amphiphilic pseudo-amino acid composition, dipeptide composition, and composition-transition-distribution. Highest reported accuracy of 90.5 % was recently achieved through novel model architecture. Here, we propose use of biological sequence transformers such as ProtBert and ESM2, trained on the Uniref databases, as the feature encoders block. With combination of 2 encoders and 2 classifiers, 4 model architectures were developed. Among the 4 models, ProtBert-CNN model outperformed other models with accuracy of 95 % on 5-fold cross validation data and 94 % on independent data.


Assuntos
Aprendizado Profundo , Peptídeos , Paladar , Peptídeos/química , Humanos
3.
J Ethnopharmacol ; 325: 117842, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38310987

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acacia nilotica (L.) Wild. Ex Delilie is a shrub with significant ethnomedicinal stature. Therefore, in the undertaken study, its wound healing attributes are determined. AIM OF THE STUDY: The current study provided evidence of the traditional use of A. nilotica species and conferred A. nilotica bark extract as a potent candidate for wound healing agents. MATERIALS & METHODS: A. nilotica leaves extract (ANL-E); A. nilotica bark extract (ANB-E), and A. nilotica stem extract (ANS-E) were prepared using methanol-chloroform (1:1). Phytochemical analysis was performed using gallic acid equivalent (GAE) total phenolic content (TPC), quercetin equivalent (QE) total flavonoid content (TFC) assays and High-performance liquid chromatography (HPLC). In vitro antioxidant potential (free radical scavenging activity (FRSA), total antioxidant capacity (TAC), and ferric reducing antioxidant power (FRAP) assay), antibacterial activity (broth microdilution method) and hemolytic analysis was carried out. Wound healing proficiency of ANB-E was determined by wound excision model followed by estimating hydroxyproline content and endogenous antioxidant markers. RESULTS: Maximum phenolic and flavonoid content were depicted by ANB-E i.e., 50.9 ± 0.34 µg gallic acid equivalent/mg extract and 28.7 ± 0.13 µg quercetin equivalent/mg extract, respectively. HPLC analysis unraveled the presence of a significant amount of catechin in ANL-E, ANB-E and ANS-E (54.66 ± 0.02, 44.9 ± 0.004 and 31.36 ± 0.02 µg/mg extract) respectively. Highest percent free radical scavenging activity, total antioxidant capacity, and ferric reducing action power (i.e., 93.3 ± 0.42 %, 222.10 ± 0.76, and 222.86 ± 0.54 µg ascorbic acid equivalent/mg extract) were exhibited by ANB-E. Maximum antibacterial potential against Staphylococcus aureus was exhibited by ANB-E (MIC 12.5 µg/ml). Two of the extracts i.e., ANL-E and ANB-E were found biocompatible with less than 5 % hemolytic potential. Based upon findings of in vitro analysis, ANB-E (10, 5, and 2.5 % w/w, C1, C2, and C3, respectively) was selected for evaluating its in vivo wound healing potential. Maximum contraction of wound area and fastest epithelization i.e., 98 ± 0.05 % and 11.2 ± 1.00 (day) was exhibited by C1. Maximum hydroxyproline content, glutathione, catalase, and peroxidase were demonstrated by C1 i.e., 15.9 ± 0.52 µg/mg, 9.3 ± 0.17 mmol/mg, 7.2 ± 0.17 and 6.2 ± 0.14 U/mg, respectively. Maximal curbed lipid peroxidation i.e., 0.7 ± 0.15 mmol/mg was also depicted by C1. CONCLUSIONS: In a nutshell, the current investigation endorsed the wound healing potential of ANB-E suggesting it to be an excellent candidate for future studies.


Assuntos
Acacia , Antioxidantes , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/análise , Acacia/química , Quercetina , Hidroxiprolina , Ácido Gálico , Antibacterianos/farmacologia , Flavonoides/farmacologia , Flavonoides/análise , Radicais Livres
4.
Saudi Pharm J ; 32(1): 101893, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38204592

RESUMO

Fagonia indica Burm.f. is known for its anti-infective character and has been studied in the present work as a synergistic remedy against resistant bacterial strains. Initially, phytochemicals were quantified in n-Hexane (n-Hex), ethyl acetate (E.A), methanol (MeOH), and aqueous (Aq.) extracts by Total Phenolic Content (TPC), Total Flavonoid Content (TFC) and Reverse Phase High Performance Liquid Chromatography (RP-HPLC) analysis. Later, after establishing an antibacterial resistance profile for extracts and antibiotics against gram-positive and gram-negative strains, synergism was evaluated in combination with cefixime through time-kill kinetics and bacterial protein estimation studies. Topographic images depicting synergism were obtained by scanning electron microscopy for Methicilin-resistant Staphylococcus aureus (MRSA) and Resistant Escherichia coli (R.E. coli). Results showed the presence of maximum phenolic (28.4 ± 0.67 µg GAE/mg extract) and flavonoid (11 ± 0.42 µg QE/mg extract) contents in MeOH extract. RP-HPLC results also displayed maximum polyphenols in MeOH extract followed by E.A extract. Clinical strains were resistant to cefixime whereas these were moderately inhibited by all extracts (MIC 150-300 µg/ml) except Aq. extract. E.A and n-Hex extracts demonstrated maximum synergism (Fractional inhibitory concentration index (FICI) 0.31) against R.E. coli. The n-Hex extract displayed total synergism against R.P. a with a 4-fold reduction in cefixime dose. Time-kill kinetics showed maximum inhibition of gram-negative bacterial growth from 3 to 12 h when treated at FICI and 2FICI values with > 10-fold reduction of the extracts' dose. All combinations demonstrate > 70 % protein content inhibition with bacterial cell wall disruption in SEM images. Fortunately, FICI concentrations have low hemolytic potential (<5%). Conclusively, F. indica extracts can mitigate antimicrobial resistance against cefixime and can be investigated in detail by in vivo and mechanistic studies.

5.
Saudi J Biol Sci ; 30(3): 103576, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36874198

RESUMO

Emergence of antimicrobial resistance complicates treatment of infections by antibiotics. This has driven research on novel and combination antibacterial therapies. The present study evaluated synergistic antimicrobial activity of plant extracts and cefixime in resistant clinical isolates. Preliminary susceptibility profiling of antibiotics and antibacterial activity of extracts was done by disc diffusion and microbroth dilution assays. Checker-board, time-kill kinetics and protein content studies were performed to validate synergistic antibacterial activity. Results showed noteworthy quantities of gallic acid (0.24-19.7 µg/mg), quercetin (1.57-18.44 µg/mg) and cinnamic acid (0.02-5.93 µg/mg) in extracts of plants assessed by reverse-phase high performance liquid chromatography (RP-HPLC). Gram-positive (4/6) and Gram-negative (13/16) clinical isolates were intermediately susceptible or resistant to cefixime, which was used for synergistic studies. EA and M extracts of plants exhibited total synergy, partial synergy and indifferent characteristics whereas aqueous extracts did not show synergistic patterns. Time-kill kinetic studies showed that synergism was both time and concentration-dependent (2-8-fold decrease in concentration). Bacterial isolates treated with combinations at fractional inhibitory concentration index (FICI) showed significantly reduced bacterial growth, as well as protein content (5-62 %) as compared to extracts/cefixime alone treated isolates. This study acknowledges the selected crude extracts as adjuvants to antibiotics to treat resistant bacterial infections.

6.
J Ethnopharmacol ; 304: 115993, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36509257

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: People of all ages experience injuries, whether mild or severe. The most available option to treat wounds as an alternative to allopathic care in both urban and rural populations is traditional medicine, which is mostly target inflammation. Bergenia ciliata (Haw.) Sternb rhizome and leaf powder are used in Ayurveda and local communities for various ailments including healing of wounds and burns. Owing to this property it is traditionally known as "Zakham-e-hayat" (wound healer). AIM OF THE STUDY: In the present study, we compared biological activity and wound healing potential of B. ciliata rhizome (R) extract and bergenin, a glycoside isolated from B. ciliata. MATERIALS AND METHODS: Reverse-phase high performance liquid chromatography (RP-HPLC) was performed to analyze polyphenols and bergenin in B. ciliata R extract. Samples were subjected to in vitro antioxidant assays including free radical scavenging, ferric chloride reducing power and total antioxidant capacity. Micro-broth dilution method, brine shrimp lethality assay and isolated RBC hemolysis assay were conducted to assess in vitro antibacterial and cytotoxic activities. Moreover, in vivo wound healing potential was determined by an excision wound model in mice. RESULTS: RP-HPLC showed significant content of polyphenols and bergenin (6.05 ± 0.12 µg/mg) in B. ciliata R extract. Crude extract possesses higher overall antioxidant and antibacterial capacities than bergenin due to presence of multiple phytoconstituents in extract. Both samples showed low hemolytic activity indicating their safe profile. Furthermore, mice treated with B. ciliata R extract depicted substantial decrease in wound area (99.3%; p < 0.05) as compared to bergenin, which showed 88.8% of wound closure after 12 days of treatment. Additionally, both treatments reduced epithelization duration by 1.6- and 1.4-fold in B. ciliata R extract (12.0 ± 0.6 days) and bergenin (14.2 ± 0.8 days) treated mice, respectively. This was supported by histopathological examination that showed greater epithelization, fibroblast proliferation, collagen synthesis, and revascularization in mice treated with B. ciliata R. CONCLUSION: Concisely, it is evident that B. ciliata R contains phytoconstituents in addition to bergenin, which potentiated wound healing activity of the extract. Hence, B. ciliata R is good source of compounds for treating wounds.


Assuntos
Antioxidantes , Saxifragaceae , Camundongos , Animais , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Benzopiranos/farmacologia , Benzopiranos/uso terapêutico , Saxifragaceae/química , Polifenóis , Antibacterianos/farmacologia
7.
Front Chem ; 11: 1325578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38362004

RESUMO

Ajuga bracteosa (family: Lamiaceae), commonly known as kauri booti, is an important ethnomedicinal plant. The current research was conducted to appraise and compare the in vitro antioxidant and antibacterial profiles as well as in vivo wound healing potentials of Ajugarin I and A. bracteosa extract. Ajugarin I and polyphenols in A. bracteosa were enumerated by reversed-phase high-performance liquid chromatography analysis that confirmed significant amounts of Ajugarin I (2.2 ± 0.02 µg/mg DW) and other phenolic compounds (14 out of 17 standards). A. bracteosa (374.4 ± 0.20 µg AAE/mg of DW, 201.9 ± 0.20 µg AAE/mg of DW, 87 ± 0.30%) showed a higher antioxidant profile compared to Ajugarin I (221.8 ± 0.50 µg AAE/mg of DW, 51.8 ± 0.40 µg AAE/mg of DW, 27.65 ± 0.80%) with 1.86-, 3.89-, and 3.15-fold greater activity in ferric reducing antioxidant power, total antioxidant capacity, and free radical scavenging assays, respectively. Likewise, A. bracteosa showed antibacterial activity against 3/5 strains (MIC 25-200 µg/ml) than Ajugarin I (2/5 strains; MIC 50-200 µg/ml). Hemolytic (<2% hemolysis) and dermal toxicity tests rendered both samples non-toxic. Additionally, A. bracteosa (100 ± 2.34% at day 12; 9.33 ± 0.47 days) demonstrated 1.11- and 1.24-fold higher percent wound contraction and epithelization time, respectively, than Ajugarin I (95.6 ± 1.52% at day 12; 11.6 ± 0.47 days) as assessed by an excision wound model in mice. Histopathological examination further reinforced the better wound healing potential of A. bracteosa with good epithelization, collagen synthesis, fibroblast proliferation, and revascularization. Briefly, we endorse the significant comparative antioxidant, antibacterial, and wound healing activities of A. bracteosa and Ajugarin I and present these as prospective candidates for wound healing drugs.

8.
Front Pharmacol ; 13: 1067697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506532

RESUMO

Introduction: This study aims at the biological profiling of Allium sativum, Zingiber officinale, Nigella sativa, Curcuma longa, Mentha piperita, Withania somnifera, Azadirachta indica, and Lawsonia inermis as alternatives against onychomycosis to combat the treatment challenges. Methods: An extract library of aqueous (DW), ethyl acetate (EA), and methanol (M) extracts was subjected to phytochemical and antioxidant colorimetric assays to gauge the ameliorating role of extracts against oxidative stress. RP-HPLC quantified therapeutically significant polyphenols. Antifungal potential (disc diffusion and broth dilution) against filamentous (dermatophytes and non-dermatophytes) and non-filamentous fungi (yeasts; Candida albicans), synergistic interactions (checkerboard method) with terbinafine and amphotericin-B against resistant clinical isolates of dermatophytes (Trichophyton rubrum and Trichophyton tonsurans) and non-dermatophytes (Aspergillus spp., Fusarium dimerum, and Rhizopus arrhizus), time-kill kinetics, and protein estimation (Bradford method) were performed to evaluate the potential of extracts against onychomycosis. Results: The highest total phenolic and flavonoid content along with noteworthy antioxidant capacity, reducing power, and a substantial radical scavenging activity was recorded for the extracts of Z. officinale. Significant polyphenolics quantified by RP-HPLC included rutin (35.71 ± 0.23 µg/mgE), gallic acid (50.17 ± 0.22 µg/mgE), catechin (93.04 ± 0.43 µg/mgE), syringic acid (55.63 ± 0.35 µg/mgE), emodin (246.32 ± 0.44 µg/mgE), luteolin (78.43 ± 0.18 µg/mgE), myricetin (29.44 ± 0.13 µg/mgE), and quercetin (97.45 ± 0.22 µg/mgE). Extracts presented prominent antifungal activity against dermatophytes and non-dermatophytes (MIC-31.25 µg/ml). The checkerboard method showed synergism with 4- and 8-fold reductions in the MICs of A. sativum, Z. officinale, M. piperita, L. inermis, and C. longa extracts and doses of amphotericin-B (Amp-B) and terbinafine (against non-dermatophytes and dermatophytes, respectively). Furthermore, the synergistic therapy showed a time-dependent decrease in fungal growth even after 9 and 12 h of treatment. The inhibition of fungal proteins was also observed to be higher with the treatment of synergistic combinations than with the extracts alone, along with the cell membrane damage caused by terbinafine and amp-B, thus making the resistant fungi incapable of subsisting. Conclusion: The extracts of A. sativum, Z. officinale, M. piperita, L. inermis, and C. longa have proven to be promising alternatives to combat oxidative stress, resistance, and other treatment challenges of onychomycosis.

9.
Saudi Pharm J ; 30(6): 793-814, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35812152

RESUMO

Multitude of diseases and side effects from conventional drugs have surged the use of herbal remedies. Thus, the current study aimed to appraise various pharmacological attributes of Artemisia brevifolia Wall. ex DC. Extracts prepared by successive solvent extraction were subjected to phytochemical and multimode antioxidant assays. Various polyphenolics and artemisinin derivatives were detected and quantified using RP-HPLC analysis. Compounds present in methanol (M) and distilled water (DW) extracts were identified using high resolution mass spectrometry (HRMS). Extracts were pharmacologically evaluated for their antibacterial, antifungal, antimalarial, antileishmanial and antidiabetic potentials. Moreover, cytotoxicity against Artemiasalina, human cancer cell lines and isolated lymphocytes was assessed. Genotoxicity was evaluated using comet, micronucleus and chromosomal aberration assays. Lastly, anti-inflammatory potential was determined through a series of in vitro and in vivo assays using BALB/c mice. Maximum extract recovery (5.95% w/w) was obtained by DW extract. Highest phenolics and flavonoids content, total antioxidant capacity, total reduction potential, percentfree radical scavenging, ß-carotene scavenging and iron chelating activities were exhibited by M extract. RP-HPLC analysis revealed significant amounts of various polyphenolic compounds (vanillic acid, syringic acid, emodin and luteolin), artemisinin, dihydro artemisinin, artesunate and artemether in ethyl acetate (EA) extract. Total 40 compounds were detected through HRMS. A noteworthy antimicrobial activity (MIC 22.22 µg/ml) was exhibited by EA extract against A. fumigatus and several bacterial strains. Maximum antimalarial, antileishmanial, brine shrimp lethality and cytotoxic potential against cancer cells was manifested by EA extract. None of the extracts exhibited genotoxicity and toxicity against isolated lymphocytes. Highest α-amylase and α-glucosidase inhibition capacities were demonstrated by DW extract. Various in-vivo anti-inflammatory models revealed significant (p < 0.05) anti-inflammatory potential of M and DW extracts. In conclusion, present findings divulged theremarkable pharmacological potential of A. brevifolia and endorse its richness in artemisinin.

10.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34959649

RESUMO

Exploration of leads with therapeutic potential in inflammatory disorders is worth pursuing. In line with this, the isolated natural compound daturaolone from Datura innoxia Mill. was evaluated for its anti-inflammatory potential using in silico, in vitro and in vivo models. Daturaolone follows Lipinski's drug-likeliness rule with a score of 0.33. Absorption, distribution, metabolism, excretion and toxicity prediction show strong plasma protein binding; gastrointestinal absorption (Caco-2 cells permeability = 34.6 nm/s); no blood-brain barrier penetration; CYP1A2, CYP2C19 and CYP3A4 metabolism; a major metabolic reaction, being aliphatic hydroxylation; no hERG inhibition; and non-carcinogenicity. Predicted molecular targets were mainly inflammatory mediators. Molecular docking depicted H-bonding interaction with nuclear factor kappa beta subunit (NF-κB), cyclooxygenase-2, 5-lipoxygenase, phospholipase A2, serotonin transporter, dopamine receptor D1 and 5-hydroxy tryptamine. Its cytotoxicity (IC50) value in normal lymphocytes was >20 µg/mL as compared to cancer cells (Huh7.5; 17.32 ± 1.43 µg/mL). Daturaolone significantly inhibited NF-κB and nitric oxide production with IC50 values of 1.2 ± 0.8 and 4.51 ± 0.92 µg/mL, respectively. It significantly reduced inflammatory paw edema (81.73 ± 3.16%), heat-induced pain (89.47 ± 9.01% antinociception) and stress-induced depression (68 ± 9.22 s immobility time in tail suspension test). This work suggests a possible anti-inflammatory role of daturaolone; however, detailed mechanistic studies are still necessary to corroborate and extrapolate the findings.

11.
Nat Prod Res ; 33(14): 2099-2104, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29873254

RESUMO

Ipomoea carnea Jacq. is an important folklore medicinal plant, assessed for its underexplored biological potential. Antioxidant, cytotoxic, antiproliferative and polyphenolic profile of whole plant was evaluated using various techniques. Maximum extract recovery (29% w/w), phenolic [13.54 ± 0.27 µg GAE/mg dry weight (DW)] and flavonoid (2.11 ± 0.10 µg QE /mg DW) content were recorded in methanol-distilled water (1:1) flower extract. HPLC-DAD analysis quantified substantial amount of six different polyphenols ranging from 0.081 to 37.95 µg/mg extract. Maximum total antioxidant and reducing potential were documented in methanol-distilled water and acetone-distilled water flower extracts (42.62 ± 0.47 and 24.38 ± 0.39 µg AAE/mg DW) respectively. Ethanol-chloroform root extract manifested highest free radical scavenging (IC50 of 61.22 µg/mL) while 94.64% of the extracts showed cytotoxicity against brine shrimps. Ethanol leaf extract exhibited remarkable activity against THP-1 cell line (IC50 = 8 ± 0.05 µg/mL) and protein kinases (31 mm phenotype bald zone).


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Ipomoea/química , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/análise , Animais , Antioxidantes/análise , Artemia/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Ensaios de Seleção de Medicamentos Antitumorais , Flavonoides/análise , Humanos , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
12.
BMC Complement Altern Med ; 17(1): 386, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28774308

RESUMO

BACKGROUND: Plants have served either as a natural templates for the development of new chemicals or a phytomedicine since antiquity. Therefore, the present study was aimed to appraise the polarity directed antioxidant, cytotoxic, protein kinase inhibitory, antileishmanial and glucose modulatory attributes of a Himalayan medicinal plant- Quercus dilatata. METHODS: Total phenolic and flavonoid contents were determined colorimetrically and various polyphenols were identified by RP-HPLC analysis. Brine shrimp lethality, SRB and MTT assays were employed to test cytotoxicity against Artemia salina and human cancer cell lines respectively. Antileishmanial activity was determined using standard MTT protocol. Glucose modulation was assessed by α-amylase inhibition assay while disc diffusion assay was used to establish protein kinase inhibitory and antifungal spectrum. RESULTS: Among 14 extracts of aerial parts, distilled water-acetone extract demonstrated maximum extract recovery (10.52% w/w), phenolic content (21.37 ± 0.21 µg GAE/mg dry weight (DW)), total antioxidant capacity (4.81 ± 0.98 µg AAE/mg DW) and reducing power potential (20.03 ± 2.4 µg/mg DW). On the other hand, Distilled water extract proficiently extracted flavonoid content (4.78 ± 0.51 µg QE/mg DW). RP-HPLC analysis revealed the presence of significant amounts of phenolic metabolites (0.049 to 15.336 µg/mg extract) including, pyrocatechol, gallic acid, catechin, chlorogenic acid, p-coumaric acid, ferulic acid and quercetin. Highest free radical scavenging capacity was found in Methanol-Ethyl acetate extract (IC50 8.1 ± 0.5 µg/ml). In the brine shrimp toxicity assay, most of the tested extracts (57%) showed high cytotoxicity. Among these, Chloroform-Methanol extract had highest cytotoxicity against THP-1 cell line (IC50 3.88 ± 0.53 µg/ml). About 50% of the extracts were found to be moderately antiproliferative against Hep G2 cell line. Methanol extract exhibited considerable protein kinase inhibitory activity against Streptomyces 85E strain (28 ± 0.35 mm bald phenotype at 100 µg/disc; MIC = 12.5 µg/ disc) while, Chloroform extract displayed maximum antidiabetic activity (α-amylase inhibition of 21.61 ± 1.53% at 200 µg/ml concentration). The highest antileishmanial potential was found in Ethyl acetate-Acetone extract (12.91 ± 0.02% at 100 µg/ml concentration), while, Q. dilatata extracts also showed a moderate antifungal activity. CONCLUSION: This study proposes that multiple-solvent system is a crucial variable to elucidate pharmacological potential of Q. dilatata and the results of the present findings prospects its potential as a resource for the discovery of novel anticancer, antidiabetic, antileishmanial and antioxidant agents.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quercus/química , Tripanossomicidas/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/uso terapêutico , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Células Hep G2 , Medicina Herbária , Humanos , Leishmania/efeitos dos fármacos , Medicina Tradicional , Neoplasias/tratamento farmacológico , Fenóis/isolamento & purificação , Fenóis/farmacologia , Fenóis/uso terapêutico , Fitoterapia , Componentes Aéreos da Planta , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Solventes , Streptomyces/efeitos dos fármacos , alfa-Amilases/antagonistas & inibidores
13.
BMC Complement Altern Med ; 15: 376, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26481652

RESUMO

BACKGROUND: The present study aims to probe the impact of polarity dependent extraction efficiency variation on pharmacological spectrum of Datura innoxia Mill. in order to reconnoiter its underexplored therapeutic potential. METHODS: A range of solvent extracts was subjected to phytochemical and biological assays to find the most proficient solvent system and plant part for each type of bioactivity. Total phenolic and flavonoid contents were determined colorimetrically and specific polyphenols were quantified by HPLC-DAD analysis. The samples were biologically evaluated by employing multimode antioxidant, cytotoxic, protein kinase inhibition and antimicrobial assays. RESULTS: Among all the solvents used, maximum percent extract recovery (33.28 %) was obtained in aqueous leaf extract. The highest amount of gallic acid equivalent phenolic and quercetin equivalent flavonoid content was obtained in the distilled water and ethyl acetate-ethanol extracts of leaf i.e., 29.91 ± 0.12 and 15.68 ± 0.18 mg/g dry weight (DW) respectively. Reverse phase HPLC-DAD based quantification revealed the presence of significant amounts of catechin, caffiec acid, apigenin and rutin ranging from 0.16 to 5.41 mg/g DW. Highest DPPH radical scavenging activity (IC50 = 16.14 µg/ml) was displayed by the ethyl acetate-acetone stem extract. Maximum total antioxidant capacity and reducing power potential were recorded in the aqueous leaf and ethyl acetate stem extracts i.e., 46.98 ± 0.24 and 15.35 ± 0.61 mg ascorbic acid equivalent/g DW respectively. Cytotoxicity against brine shrimps categorized 25 % of the leaf, 16 % of the stem and 8.3 % of the fruit extracts as highly potent (LC50 ≤ 100 µg/ml). Significant cytotoxicity against human leukemia (THP-1) cell line was exhibited by the chloroform and n-hexane fruit extracts with IC50 4.52 and 3.49 µg/ml respectively. Ethyl acetate and methanol-chloroform extracts of leaf and stem exhibited conspicuous protein kinase inhibitory activity against Streptomyces 85E strain with 22 mm bald phenotype. A noteworthy antimicrobial activity was exhibited by leaf extracts against Micrococcus luteus and n-hexane fruit extract against Aspergillus niger (MIC 3.70 and 12.5 µg/ml respectively). CONCLUSION: Multiple solvent system is a crucial variable to retrieve pharmacological potential of medicinal plants and D. innoxia can be envisaged as a novel source of natural antioxidants, antimicrobials and anticancer compounds.


Assuntos
Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Datura/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Linhagem Celular , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Datura/metabolismo , Flavonoides/análise , Flavonoides/isolamento & purificação , Flavonoides/metabolismo , Flavonoides/farmacologia , Humanos , Micrococcus luteus/efeitos dos fármacos , Fenóis/análise , Fenóis/isolamento & purificação , Fenóis/metabolismo , Fenóis/farmacologia , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/metabolismo , Extratos Vegetais/análise , Extratos Vegetais/metabolismo , Folhas de Planta/química , Streptomyces/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA