Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37687406

RESUMO

Melatonin is a pleiotropic, nontoxic, regulatory biomolecule with various functions in abiotic stress tolerance. It reverses the adverse effect of heat stress on photosynthesis in plants and helps with sulfur (S) assimilation. Our research objective aimed to find the influence of melatonin, along with excess sulfur (2 mM SO42-), in reversing heat stress's impacts on the photosynthetic ability of the mustard (Brassica juncea L.) cultivar SS2, a cultivar with low ATP-sulfurylase activity and a low sulfate transport index (STI). Further, we aimed to substantiate that the effect was a result of ethylene modulation. Melatonin in the presence of excess-S (S) increased S-assimilation and the STI by increasing the ATP-sulfurylase (ATP-S) and serine acetyltransferase (SAT) activity of SS2, and it enhanced the content of cysteine (Cys) and methionine (Met). Under heat stress, melatonin increased S-assimilation and diverted Cys towards the synthesis of more reduced glutathione (GSH), utilizing excess-S at the expense of less methionine and ethylene and resulting in plants' reduced sensitivity to stress ethylene. The treatment with melatonin plus excess-S increased antioxidant enzyme activity, photosynthetic-S use efficiency (p-SUE), Rubisco activity, photosynthesis, and growth under heat stress. Further, plants receiving melatonin and excess-S in the presence of norbornadiene (NBD; an ethylene action inhibitor) under heat stress showed an inhibited STI and lower photosynthesis and growth. This suggested that ethylene was involved in the melatonin-mediated heat stress reversal effects on photosynthesis in plants. The interaction mechanism between melatonin and ethylene is still elusive. This study provides avenues to explore the melatonin-ethylene-S interaction for heat stress tolerance in plants.

2.
Sci Rep ; 13(1): 7468, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156928

RESUMO

Melatonin (MT) and methyl jasmonate (MeJA) play important roles in the adaptation of plants to different stress factors by modulating stress tolerance mechanisms. The present study reports the involvement of MT (100 µM) in MeJA (10 µM)-induced photosynthetic performance and heat stress acclimation through regulation of the antioxidant metabolism and ethylene production in wheat (Triticum aestivum L.) plants. Plants exposed to 40 °C for 6 h per day for 15 days and allowed to retrieve at 28 °C showed enhanced oxidative stress and antioxidant metabolism, increased 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) activity and ethylene production, and decreased photosynthetic performance. In contrast, the exogenously applied MT and MeJA reduced oxidative stress through improved S-assimilation (+ 73.6% S content), antioxidant defense system (+ 70.9% SOD, + 115.8% APX and + 104.2% GR, and + 49.5% GSH), optimized ethylene level to 58.4% resulting in improved photosynthesis by 75%. The use of p-chlorophenyl alanine, a MT biosynthesis inhibitor along with MeJA in the presence of heat stress reduced the photosynthetic performance, ATP-S activity and GSH content, substantiated the requirement of MT in the MeJA-induced photosynthetic response of plants under heat stress. These findings suggest that MeJA evoked the plant's ability to withstand heat stress by regulating the S-assimilation, antioxidant defense system, and ethylene production, and improving photosynthetic performance was dependent on MT.


Assuntos
Antioxidantes , Melatonina , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Triticum/metabolismo , Etilenos/metabolismo , Fotossíntese , Estresse Oxidativo , Resposta ao Choque Térmico
3.
Sci Rep ; 13(1): 6858, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100855

RESUMO

The present study demonstrated that exogenously-sourced nitric oxide (as SNP, sodium nitroprusside; NO donor) and sulfur (S) protected photosynthesis against chromium (Cr) stress in wheat (Triticum aestivum L. cv. HD 2851). Plants grown with 100 µM Cr exhibited higher reactive oxygen species (ROS) production, resulting in photosynthetic damage. The individual application of 50 µM NO increased carbohydrate metabolism as well as photosynthetic parameters, antioxidant system with higher transcriptional gene levels that encode the key enzymes for the Calvin cycle under Cr stress. These effects were more prominent when NO was applied with 1.0 mM SO42-. An increase in the reduced glutathione (GSH) content obtained with NO was further enhanced by S and resulted in higher protection against Cr stress. The protective effect of NO with S against Cr toxicity on photosynthesis was reversed when buthionine sulfoximine (BSO; GSH biosynthetic inhibitor) was used. Application of BSO reversed the impact of NO plus S on photosynthesis under Cr stress, verifying that the ameliorating effect of NO was through S-assimilation and via GSH production. Thus, the availability of S to NO application can help reduce Cr toxicity and protect photosynthetic activity and expression of the Calvin cycle enzymes in leaves through the GSH involvement.


Assuntos
Cromo , Óxido Nítrico , Cromo/toxicidade , Cromo/metabolismo , Óxido Nítrico/metabolismo , Triticum/metabolismo , Fotossíntese , Metabolismo dos Carboidratos , Antioxidantes/metabolismo , Glutationa/metabolismo , Enxofre/farmacologia , Enxofre/metabolismo , Suplementos Nutricionais , Estresse Oxidativo
4.
Physiol Plant ; 174(6): e13832, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36437590

RESUMO

The involvement of melatonin in the regulation of salt stress acclimation has been shown in plants in this present work. We found that the GOAL cultivar of wheat (Triticum aestivum L.) was the most salt-tolerant among the investigated cultivars, GOAL, HD-2967, PBW-17, PBW-343, PBW-550, and WH-1105 when screened for tolerance to 100 mM NaCl. The application of 100 µM melatonin maximally reduced oxidative stress and improved photosynthesis in the cv. GOAL. Melatonin supplementation reduced salt stress-induced oxidative stress by upregulating the activity of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), and reduced the glutathione (GSH) production. This resulted in increased membrane stability, photosynthetic-N use efficiency and photosynthesis in plants. The application of 50 µM of the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) in the presence of melatonin and salt stress increased H2 O2 content but reduced GR activity and GSH, photosynthesis, and plant dry mass. This signifies that melatonin-mediated salt stress tolerance was related to ethylene synthesis as it improved antioxidant activity and photosynthesis of plants under salt stress. Thus, the interaction of melatonin and ethylene bears a prominent role in salt stress tolerance in wheat and can be used to develop salt tolerance in other crops.


Assuntos
Antioxidantes , Melatonina , Antioxidantes/metabolismo , Melatonina/farmacologia , Triticum/metabolismo , Fotossíntese , Etilenos , Estresse Oxidativo , Glutationa/metabolismo
5.
Plants (Basel) ; 11(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432860

RESUMO

Phytohormones have a role in stress adaptation. The major mechanism underlying the role of exogenously-sourced nitric oxide (NO; as sodium nitroprusside, SNP: 50.0 µM) and salicylic acid (SA; 0.5 mM) in the presence of 2.0 mM SO4-2 was assessed in heat stress (HS; 40 °C for 6 h daily for 15 days) tolerance in wheat (Triticum aestivum L. cv. HD-3226). The cultivar HD-3226 possessed high photosynthetic sulfur use efficiency (p-SUE) among the six cultivars screened. Plants grown under HS exhibited an increased content of reactive oxygen species (ROS; including superoxide radical and hydrogen peroxide) and extent of lipid peroxidation with a consequent reduction in photosynthesis and growth. However, both NO and SA were found to be protective against HS via enhanced S assimilation. Their application reduced oxidative stress and increased the activity of antioxidant enzymes. NO or SA supplementation along with S under HS recovered the losses and improved photosynthesis and growth. The use of SA inhibitor (2-aminoindane-2-phosphonic acid; AIP) and NO scavenger (cPTIO) confirmed that the mitigating effects of SA and NO involved induction in S assimilation.

6.
Plants (Basel) ; 11(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36079592

RESUMO

Ethylene is a gaseous plant growth hormone that regulates various plant developmental processes, ranging from seed germination to senescence. The mechanisms underlying ethylene biosynthesis and signaling involve multistep mechanisms representing different control levels to regulate its production and response. Ethylene is an established phytohormone that displays various signaling processes under environmental stress in plants. Such environmental stresses trigger ethylene biosynthesis/action, which influences the growth and development of plants and opens new windows for future crop improvement. This review summarizes the current understanding of how environmental stress influences plants' ethylene biosynthesis, signaling, and response. The review focuses on (a) ethylene biosynthesis and signaling in plants, (b) the influence of environmental stress on ethylene biosynthesis, (c) regulation of ethylene signaling for stress acclimation, (d) potential mechanisms underlying the ethylene-mediated stress tolerance in plants, and (e) summarizing ethylene formation under stress and its mechanism of action.

7.
Antioxidants (Basel) ; 11(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36009197

RESUMO

Rising temperatures worldwide due to global climate change are a major scientific issue at present. The present study reports the effects of gaseous signaling molecules, ethylene (200 µL L-1; 2-chloroethylphosphonic acid; ethephon, Eth), nitric oxide (NO; 100 µM sodium nitroprusside; SNP), and hydrogen sulfide (H2S; 200 µM sodium hydrosulfide, NaHS) in high temperature stress (HS) tolerance, and whether or not H2S contributes to ethylene or NO-induced thermo-tolerance and photosynthetic protection in rice (Oryza sativa L.) cultivars, i.e., Taipei-309, and Rasi. Plants exposed to an HS of 40 °C for six h per day for 15 days caused a reduction in rice biomass, associated with decreased photosynthesis and leaf water status. High temperature stress increased oxidative stress by increasing the content of hydrogen peroxide (H2O2) and thiobarbituric acid reactive substance (TBARS) in rice leaves. These signaling molecules increased biomass, leaf water status, osmolytes, antioxidants, and photosynthesis of plants under non-stress and high temperature stress. However, the effect was more conspicuous with ethylene than NO and H2S. The application of H2S scavenger hypotaurine (HT) reversed the effect of ethylene or NO on photosynthesis under HS. This supports the findings that the ameliorating effects of Eth or SNP involved H2S. Thus, the presence of H2S with ethylene or NO can enhance thermo-tolerance while also protecting plant photosynthesis.

8.
Front Plant Sci ; 13: 852704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651777

RESUMO

Arsenic (As) stress provokes various toxic effects in plants that disturbs its photosynthetic potential and hampers growth. Ethylene and selenium (Se) have shown regulatory interaction in plants for metal tolerance; however, their synergism in As tolerance through modification of the antioxidant enzymes and hormone biosynthesis needs further elaboration. With this in view, we investigated the impact of ethylene and Se in the protection of photosynthetic performance against As stress in mustard (Brassica juncea L.). Supplementation with ethephon (2-chloroethylphosphonic acid; ethylene source) and/or Se allayed the negative impact of As-induced toxicity by limiting As content in leaves, enhancing the antioxidant defense system, and decreasing the accumulation of abscisic acid (ABA). Ethylene plus Se more prominently regulated stomatal behavior, improved photosynthetic capacity, and mitigated As-induced effects. Ethephon in the presence of Se decreased stress ethylene formation and ABA accumulation under As stress, resulting in improved photosynthesis and growth through enhanced reduced glutathione (GSH) synthesis, which in turn reduced the oxidative stress. In both As-stressed and non-stressed plants treated with ethylene action inhibitor, norbornadiene, resulted in increased ABA and oxidative stress with reduced photosynthetic activity by downregulating expression of ascorbate peroxidase and glutathione reductase, suggesting the involvement of ethylene in the reversal of As-induced toxicity. These findings suggest that ethephon and Se induce regulatory interaction between ethylene, ABA accumulation, and GSH metabolism through regulating the activity and expression of antioxidant enzymes. Thus, in an economically important crop (mustard), the severity of As stress could be reduced through the supplementation of both ethylene and Se that coordinate for maximum stress alleviation.

9.
Biomolecules ; 12(5)2022 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-35625606

RESUMO

Plants encounter several abiotic stresses, among which heat stress is gaining paramount attention because of the changing climatic conditions. Severe heat stress conspicuously reduces crop productivity through changes in metabolic processes and in growth and development. Ethylene and hydrogen sulfide (H2S) are signaling molecules involved in defense against heat stress through modulation of biomolecule synthesis, the antioxidant system, and post-translational modifications. Other compounds containing the essential mineral nutrient sulfur (S) also play pivotal roles in these defense mechanisms. As biosynthesis of ethylene and H2S is connected to the S-assimilation pathway, it is logical to consider the existence of a functional interplay between ethylene, H2S, and S in relation to heat stress tolerance. The present review focuses on the crosstalk between ethylene, H2S, and S to highlight their joint involvement in heat stress tolerance.


Assuntos
Sulfeto de Hidrogênio , Etilenos/metabolismo , Resposta ao Choque Térmico , Sulfeto de Hidrogênio/metabolismo , Plantas/metabolismo , Enxofre/metabolismo
10.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162955

RESUMO

The effect of exogenously-applied ethylene sourced from ethephon (2-chloroethyl phosphonic acid)was studied on photosynthesis, carbohydrate metabolism, and high-temperature stress tolerance in Taipei-309 and Rasi cultivars of rice (Oryza sativa L.). Heat stress increased the content of H2O2 and thiobarbituric acid reactive substances (TBARS)more in Rasi than Taipei-309. Further, a significant decline in sucrose, starch, and carbohydrate metabolism enzyme activity and photosynthesis was also observed in response to heat stress. The application of ethephon reduced H2O2 and TBARS content by enhancing the enzymatic antioxidant defense system and improved carbohydrate metabolism, photosynthesis, and growth more conspicuously in Taipei-309 under heat stress. The ethephon application enhanced photosynthesis by up-regulating the psbA and psbB genes of photosystem II in heat-stressed plants. Interestingly, foliar application of ethephoneffectively down-regulated high-temperature-stress-induced elevated ethylene biosynthesis gene expression. Overall, ethephon application optimized ethylene levels under high-temperature stress to regulate the antioxidant enzymatic system and carbohydrate metabolism, reducing the adverse effects on photosynthesis. These findings suggest that ethylene regulates photosynthesis via carbohydrate metabolism and the antioxidant system, thereby influencing high-temperature stress tolerance in rice.


Assuntos
Antioxidantes/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Oryza/crescimento & desenvolvimento , Complexo de Proteína do Fotossistema II/genética , Etilenos/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Compostos Organofosforados/química , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Proteínas de Plantas/genética , Termotolerância , Tiobarbitúricos/metabolismo
11.
Plants (Basel) ; 10(7)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199061

RESUMO

In the present study, the potential of ethylene as ethephon (an ethylene source) was investigated individually and in combination with split doses of nitrogen (N) and sulfur (S) soil treatments for removal of the damaging effects of salt stress (100 mM NaCl) in mustard (Brassica juncea L.). Plants were grown with 50 mg N plus 50 mg S kg-1 soil at sowing time and an equivalent dose at 20 days after sowing [N50 + S50]0d and 20d. Ethephon at 200 µL L‒1 was applied to combined split doses of N and S with or without NaCl. Plants subjected to NaCl showed a decrease in growth and photosynthetic characteristics as well as N and S assimilation, whereas proline metabolism and antioxidants increased. The application of ethephon to plants grown with split N and S doses significantly enhanced photosynthetic efficiency by increasing the assimilation of N and S, improving the concentration of proline and induction of the antioxidant system with or without NaCl. The regulation of ethylene and/or split forms of N and S application may be potential tools for not just overcoming salt stress effects in this species and in related Brassicaceae but also enhancing their photosynthesis and growth potential through increased nutrient assimilation.

12.
Plants (Basel) ; 10(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478097

RESUMO

This study explored the interactive effect of ethephon (2-chloroethyl phosphonic acid; an ethylene source) and sulfur (S) in regulating the antioxidant system and ABA content and in maintaining stomatal responses, chloroplast structure, and photosynthetic performance of mustard plants (Brassica juncea L. Czern.) grown under 100 mM NaCl stress. The treatment of ethephon (200 µL L-1) and S (200 mg S kg-1 soil) together markedly improved the activity of enzymatic and non-enzymatic components of the ascorbate-glutathione (AsA-GSH) cycle, resulting in declined oxidative stress through lesser content of sodium (Na+) ion and hydrogen peroxide (H2O2) in salt-stressed plants. These changes promoted the development of chloroplast thylakoids and photosynthetic performance under salt stress. Ethephon + S also reduced abscisic acid (ABA) accumulation in guard cell, leading to maximal stomatal conductance under salt stress. The inhibition of ethylene action by norbornadiene (NBD) in salt- plus non-stressed treated plants increased ABA and H2O2 contents, and reduced stomatal opening, suggesting the involvement of ethephon and S in regulating stomatal conductance. These findings suggest that ethephon and S modulate antioxidant system and ABA accumulation in guard cells, controlling stomatal conductance, and the structure and efficiency of the photosynthetic apparatus in plants under salt stress.

13.
Front Plant Sci ; 7: 1628, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27853462

RESUMO

The potential of exogenous ethylene and sulfur (S) in reversal of cadmium (Cd)-inhibited photosynthetic and growth responses in mustard (Brassica juncea L. cv. Pusa Jai Kisan) were studied. Plants grown with 50 µM Cd showed increased superoxide and H2O2 accumulation and lipid peroxidation together with increased activity of 1-aminocyclopropane carboxylic acid synthase (ACS) and ethylene production and inhibition of photosynthesis and growth. Application of 1 mM SO42- or 200 µL L-1 ethephon (ethylene source) influenced photosynthetic and growth performance equally in presence or absence of Cd. However, their combined application synergistically improved photosynthetic performance more in presence of Cd and reduced oxidative stress (lower superoxide and H2O2 accumulation) by decreasing ethylene and glucose sensitivity with the increase in cysteine and methionineand a non-proteinogenic thiol (reduced glutathione; GSH) contents. The central role of ethylene in potentiating S-mediated reversal of Cd-induced oxidative stress was evident with the use of ethylene action inhibitor, norbornadiene (NBD). The application of NBD resulted in decreased thiol production and photosynthetic responses. This suggests that ethylene promotes the effects of S in reversal of adverse effects of Cd, and thus, ethylene modulation may be considered as potential tool to substantiate the S effects in reversal of Cd inhibited photosynthesis and growth in mustard.

14.
Front Plant Sci ; 7: 521, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200007

RESUMO

The role of nitric oxide (NO) and sulfur (S) on stomatal responses and photosynthetic performance was studied in mustard (Brassica juncea L.) in presence or absence of salt stress. The combined application of 100 µM NO (as sodium nitroprusside) and 200 mg S kg(-1) soil (S) more prominently influenced stomatal behavior, photosynthetic and growth performance both in the absence and presence of salt stress. The chloroplasts from salt-stressed plants had disorganized chloroplast thylakoids, but combined application of NO and S resulted in well-developed chloroplast thylakoids and properly stacked grana. The leaves from plants receiving NO plus S exhibited lower superoxide ion accumulation under salt stress than the plants receiving NO or S. These plants also exhibited increased activity of ATP-sulfurylase (ATPS), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) and optimized NO generation that helped in minimizing oxidative stress. The enhanced S-assimilation of these plants receiving NO plus S resulted in increased production of cysteine (Cys) and reduced glutathione (GSH). These findings indicated that NO influenced photosynthesis under salt stress by regulating oxidative stress and its effects on S-assimilation, an antioxidant system and NO generation. The results suggest that NO improves photosynthetic performance of plants grown under salt stress more effectively when plants received S.

15.
Plant Physiol Biochem ; 104: 1-10, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26998941

RESUMO

The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 µM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants.


Assuntos
Cádmio/toxicidade , Etilenos/farmacologia , Giberelinas/farmacologia , Mostardeira/fisiologia , Fotossíntese/efeitos dos fármacos , Enxofre/metabolismo , Antioxidantes/metabolismo , Cádmio/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Liases/metabolismo , Mostardeira/efeitos dos fármacos , Mostardeira/enzimologia , Mostardeira/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Sulfato Adenililtransferase/metabolismo
16.
Front Plant Sci ; 7: 1933, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066485

RESUMO

The effect of methyl jasmonate (MeJA) in mitigation of 50 µM cadmium (Cd) toxicity on structure and function of photosynthetic apparatus in presence or absence of 1.0 mM [Formula: see text] was investigated in mustard (Brassica juncea L. cv. Ro Agro 4001) at 30 days after sowing. Plants exhibited increased oxidative stress, impaired photosynthetic function when grown with Cd, but MeJA in presence of sulfur (S) more prominently ameliorated Cd effects through increased S-assimilation and production of reduced glutathione (GSH) and promoted photosynthetic functions. The transmission electron microscopy showed that MeJA protected chloroplast structure against Cd-toxicity. The use of GSH biosynthetic inhibitor, buthionine sulfoximine (BSO) substantiated the findings that ameliorating effect of MeJA was through GSH production. MeJA could not alleviate Cd effects when BSO was used due to unavailability of GSH even with the input of S. The study shows that MeJA regulates S-assimilation and GSH production for protection of structure and function of photosynthetic apparatus in mustard plants under Cd stress.

17.
Front Plant Sci ; 6: 927, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579172

RESUMO

Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signaling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N) is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological processes such as leaf gas exchanges, roots architecture, leaf, fruits, and flowers development. Low plant N use efficiency (NUE) leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signaling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signaling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase NUE and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest.

18.
Ecotoxicol Environ Saf ; 106: 54-61, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24836878

RESUMO

We studied the response of ethylene-sensitive (Pusa Jai Kisan) and ethylene-insensitive (SS2) mustard (Brassica juncea) cultivars to 0, 0.5, 1.0 and 2.0 mM SO4(2-), and the effect of 1.0 mM SO4(2-) was studied in the amelioration of 50 µM cadmium (Cd). The Cd-induced oxidative stress and Cd accumulation were greater in SS2 than Pusa Jai Kisan, but sulfur (S) application alleviated Cd-induced oxidative stress more prominently in Pusa Jai Kisan by increasing S-metabolism and synthesis of reduced glutathione (GSH) and ethylene production; and promoted photosynthesis and plant dry mass under Cd stress. The ethylene-sensitive cultivar responded more to S treatment under Cd stress and showed increased activity of antioxidant system resulting in increased photosynthesis and growth. Cadmium treatment resulted in rapid increase in ethylene formation which adversely influenced photosynthesis and plant dry mass. However, S and ethephon application to Cd-treated plants lowered ethylene formation to optimal range responsible for maximal GSH synthesis and protection against Cd-induced oxidative stress. The similarity of the effectiveness of 1.0 mM SO4(2-) with 200 µL L(-1) ethylene source as ethephon in alleviation of 50 µM Cd further verifies that differential alleviation of Cd toxicity in the two cultivars by S was dependent on ethylene production. The results suggest that ethylene production determines Cd stress alleviation by S via regulatory interaction with antioxidant metabolism. Thus, ethylene production and sensitivity bear a prominent role in alleviation of Cd stress by S and can be used as a criterion for developing Cd tolerant genotypes.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Etilenos/metabolismo , Mostardeira/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Enxofre/farmacologia , Glutationa/metabolismo , Mostardeira/crescimento & desenvolvimento , Mostardeira/metabolismo , Compostos Organofosforados/farmacologia , Fotossíntese/efeitos dos fármacos
19.
Plant Signal Behav ; 8(1): e22478, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23104111

RESUMO

Sulfur (S) deficiency is prevailing all over the world and becoming an important issue for crop improvement through maximising its utilization efficiency by plants for sustainable agriculture. Its interaction with other regulatory molecules in plants is necessary to improve our understanding on its role under changing environment. Our knowledge on the influence of S on ethylene signaling is meagre although it is a constituent of cysteine (Cys) required for the synthesis of reduced glutathione (GSH) and S-adenosyl methionine (SAM), a precursor of ethylene biosynthesis. Thus, there may be an interaction between S assimilation, ethylene signaling and plant responses under optimal and stressful environmental conditions. The present review emphasizes that responses of plants to S involve ethylene action. This evaluation will provide an insight into the details of interactive role of S and ethylene signaling in regulating plant processes and prove profitable for developing sustainability under changing environmental conditions.


Assuntos
Cisteína/metabolismo , Etilenos/metabolismo , Plantas/metabolismo , Enxofre/metabolismo , Etilenos/biossíntese , Glutationa/biossíntese , S-Adenosilmetionina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA