Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(2): 108820, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303729

RESUMO

ISG15 is a type I interferon-induced ubiquitin-like modifier that functions in innate immune responses. The major human ISG15 ligase is hHERC5, a ribosome-associated HECT E3 that broadly ISGylates proteins cotranslationally. Here, we characterized the hHERC5-dependent ISGylome and identified over 2,000 modified lysines in over 1,100 proteins in IFN-ß-stimulated cells. In parallel, we compared the substrate selectivity hHERC5 to the major mouse ISG15 ligase, mHERC6, and analysis of sequences surrounding ISGylation sites revealed that hHERC5 and mHERC6 have distinct preferences for amino acid sequence context. Several features of the datasets were consistent with ISGylation of ribosome-tethered nascent chains, and mHERC6, like hHERC5, cotranslationally modified nascent polypeptides. The ISGylome datasets presented here represent the largest numbers of protein targets and modification sites attributable to a single Ub/Ubl ligase and the lysine selectivities of the hHERC5 and mHERC6 enzymes may have implications for the activities of HECT domain ligases, generally.

2.
Cell Rep ; 42(12): 113506, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38019655

RESUMO

Cross-presentation of dead cell-associated antigens by conventional dendritic cells type 1 (cDC1s) is critical for CD8+ T cells response against many tumors and viral infections. It is facilitated by DNGR-1 (CLEC9A), an SYK-coupled cDC1 receptor that detects dead cell debris. Here, we report that DNGR-1 engagement leads to rapid activation of CBL and CBL-B E3 ligases to cause K63-linked ubiquitination of SYK and terminate signaling. Genetic deletion of CBL E3 ligases or charge-conserved mutation of target lysines within SYK abolishes SYK ubiquitination and results in enhanced DNGR-1-dependent antigen cross-presentation. We also find that cDC1 deficient in CBL E3 ligases are more efficient at cross-priming CD8+ T cells to dead cell-associated antigens and promoting host resistance to tumors. Our findings reveal a role for CBL-dependent ubiquitination in limiting cross-presentation of dead cell-associated antigens and highlight an axis of negative regulation of cDC1 activity that could be exploited to increase anti-tumor immunity.


Assuntos
Apresentação Cruzada , Ubiquitina-Proteína Ligases , Linfócitos T CD8-Positivos , Proteínas Proto-Oncogênicas c-cbl , Ubiquitinação , Células Dendríticas , Quinase Syk
4.
Nat Cancer ; 3(2): 173-187, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35221334

RESUMO

Radiotherapy is one of the most effective approaches to achieve tumor control in cancer patients, although healthy tissue injury due to off-target radiation exposure can occur. In this study, we used a model of acute radiation injury to the lung, in the context of cancer metastasis, to understand the biological link between tissue damage and cancer progression. We exposed healthy mouse lung tissue to radiation before the induction of metastasis and observed a strong enhancement of cancer cell growth. We found that locally activated neutrophils were key drivers of the tumor-supportive preconditioning of the lung microenvironment, governed by enhanced regenerative Notch signaling. Importantly, these tissue perturbations endowed arriving cancer cells with an augmented stemness phenotype. By preventing neutrophil-dependent Notch activation, via blocking degranulation, we were able to significantly offset the radiation-enhanced metastases. This work highlights a pro-tumorigenic activity of neutrophils, which is likely linked to their tissue regenerative functions.


Assuntos
Neoplasias Pulmonares , Exposição à Radiação , Animais , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Camundongos , Ativação de Neutrófilo , Neutrófilos/patologia , Microambiente Tumoral
5.
Mol Cell ; 81(13): 2808-2822.e10, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111399

RESUMO

The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway senses cytosolic DNA and induces interferon-stimulated genes (ISGs) to activate the innate immune system. Here, we report the unexpected discovery that cGAS also senses dysfunctional protein production. Purified ribosomes interact directly with cGAS and stimulate its DNA-dependent activity in vitro. Disruption of the ribosome-associated protein quality control (RQC) pathway, which detects and resolves ribosome collision during translation, results in cGAS-dependent ISG expression and causes re-localization of cGAS from the nucleus to the cytosol. Indeed, cGAS preferentially binds collided ribosomes in vitro, and orthogonal perturbations that result in elevated levels of collided ribosomes and RQC activation cause sub-cellular re-localization of cGAS and ribosome binding in vivo as well. Thus, translation stress potently increases DNA-dependent cGAS activation. These findings have implications for the inflammatory response to viral infection and tumorigenesis, both of which substantially reprogram cellular protein synthesis.


Assuntos
Núcleo Celular , Nucleotidiltransferases , Biossíntese de Proteínas , Ribossomos , Transdução de Sinais , Estresse Fisiológico , Transporte Ativo do Núcleo Celular , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo
6.
Elife ; 92020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31934863

RESUMO

Telomeres are a significant challenge to DNA replication and are prone to replication stress and telomere fragility. The shelterin component TRF1 facilitates telomere replication but the molecular mechanism remains uncertain. By interrogating the proteomic composition of telomeres, we show that mouse telomeres lacking TRF1 undergo protein composition reorganisation associated with the recruitment of DNA damage response and chromatin remodellers. Surprisingly, mTRF1 suppresses the accumulation of promyelocytic leukemia (PML) protein, BRCA1 and the SMC5/6 complex at telomeres, which is associated with increased Homologous Recombination (HR) and TERRA transcription. We uncovered a previously unappreciated role for mTRF1 in the suppression of telomere recombination, dependent on SMC5 and also POLD3 dependent Break Induced Replication at telomeres. We propose that TRF1 facilitates S-phase telomeric DNA synthesis to prevent illegitimate mitotic DNA recombination and chromatin rearrangement.


Assuntos
Montagem e Desmontagem da Cromatina , Quebras de DNA , Replicação do DNA/genética , Recombinação Genética/genética , Telômero/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromatina/metabolismo , DNA/biossíntese , DNA Polimerase III/metabolismo , Deleção de Genes , Humanos , Corpos de Inclusão/metabolismo , Camundongos , Mitose , Regulação para Cima/genética
7.
Nat Cell Biol ; 21(3): 311-318, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804502

RESUMO

Genotoxic DNA double-strand breaks (DSBs) can be repaired by error-free homologous recombination (HR) or mutagenic non-homologous end-joining1. HR supresses tumorigenesis1, but is restricted to the S and G2 phases of the cell cycle when a sister chromatid is present2. Breast cancer type 1 susceptibility protein (BRCA1) promotes HR by antagonizing the anti-resection factor TP53-binding protein 1(53BP1) (refs. 2-5), but it remains unknown how BRCA1 function is limited to the S and G2 phases. We show that BRCA1 recruitment requires recognition of histone H4 unmethylated at lysine 20 (H4K20me0), linking DSB repair pathway choice directly to sister chromatid availability. We identify the ankyrin repeat domain of BRCA1-associated RING domain protein 1 (BARD1)-the obligate BRCA1 binding partner3-as a reader of H4K20me0 present on new histones in post-replicative chromatin6. BARD1 ankyrin repeat domain mutations disabling H4K20me0 recognition abrogate accumulation of BRCA1 at DSBs, causing aberrant build-up of 53BP1, and allowing anti-resection activity to prevail in S and G2. Consequently, BARD1 recognition of H4K20me0 is required for HR and resistance to poly (ADP-ribose) polymerase inhibitors. Collectively, this reveals that BRCA1-BARD1 monitors the replicative state of the genome to oppose 53BP1 function, routing only DSBs within sister chromatids to HR.


Assuntos
Proteína BRCA1/metabolismo , Cromátides/metabolismo , Histonas/metabolismo , Recombinação Homóloga , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Proteína BRCA1/genética , Linhagem Celular Tumoral , Cromátides/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Fase G2/genética , Células HCT116 , Células HeLa , Humanos , Lisina/metabolismo , Metilação , Fase S/genética , Homologia de Sequência de Aminoácidos , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética
8.
Nat Commun ; 9(1): 4049, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282987

RESUMO

Modifiable hydrogels have revealed tremendous insight into how physical characteristics of cells' 3D environment drive stem cell lineage specification. However, in native tissues, cells do not passively receive signals from their niche. Instead they actively probe and modify their pericellular space to suit their needs, yet the dynamics of cells' reciprocal interactions with their pericellular environment when encapsulated within hydrogels remains relatively unexplored. Here, we show that human bone marrow stromal cells (hMSC) encapsulated within hyaluronic acid-based hydrogels modify their surroundings by synthesizing, secreting and arranging proteins pericellularly or by degrading the hydrogel. hMSC's interactions with this local environment have a role in regulating hMSC fate, with a secreted proteinaceous pericellular matrix associated with adipogenesis, and degradation with osteogenesis. Our observations suggest that hMSC participate in a bi-directional interplay between the properties of their 3D milieu and their own secreted pericellular matrix, and that this combination of interactions drives fate.


Assuntos
Comunicação Celular , Linhagem da Célula , Junções Célula-Matriz/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Amidas/farmacologia , Comunicação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Junções Célula-Matriz/efeitos dos fármacos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Paclitaxel/farmacologia , Piridinas/farmacologia , Células-Tronco/efeitos dos fármacos
9.
J Clin Invest ; 128(12): 5620-5633, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30300142

RESUMO

Activating mutations in the Wnt pathway drive a variety of cancers, but the specific targets and pathways activated by Wnt ligands are not fully understood. To bridge this knowledge gap, we performed a comprehensive time-course analysis of Wnt-dependent signaling pathways in an orthotopic model of Wnt-addicted pancreatic cancer, using a porcupine (PORCN) inhibitor currently in clinical trials, and validated key results in additional Wnt-addicted models. The temporal analysis of the drug-perturbed transcriptome demonstrated direct and indirect regulation of more than 3,500 Wnt-activated genes (23% of the transcriptome). Regulation was both via Wnt/ß-catenin and through the modulation of protein abundance of important transcription factors, including MYC, via Wnt-dependent stabilization of proteins (Wnt/STOP). Our study identifies a central role of Wnt/ß-catenin and Wnt/STOP signaling in controlling ribosome biogenesis, a key driver of cancer proliferation.


Assuntos
Neoplasias Experimentais/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ribossomos/metabolismo , Transcriptoma , Via de Sinalização Wnt , Aciltransferases/antagonistas & inibidores , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Ribossomos/genética , Ribossomos/patologia
10.
Biomaterials ; 176: 13-23, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29852376

RESUMO

Physical properties of modifiable hydrogels can be tuned to direct stem cell differentiation in a role akin to that played by the extracellular matrix in native stem cell niches. However, stem cells do not respond to matrix cues in isolation, but rather integrate soluble and non-soluble signals to balance quiescence, self-renewal and differentiation. Here, we encapsulated single cell suspensions of human mesenchymal stem cells (hMSC) in hyaluronic acid-based hydrogels at high and low densities to unravel the contributions of matrix- and non-matrix-mediated cues in directing stem cell response. We show that in high-density (HD) cultures, hMSC do not rely on hydrogel cues to guide their fate. Instead, they take on characteristics of quiescent cells and secrete a glycoprotein-rich pericellular matrix (PCM) in response to signaling from neighboring cells. Preventing quiescence precluded the formation of a glycoprotein-rich PCM and forced HD cultures to differentiate in response to hydrogel composition. Our observations may have important implications for tissue engineering as neighboring cells may act counter to matrix cues provided by scaffolds. Moreover, as stem cells are most regenerative if activated from a quiescent state, our results suggest that ex vivo native-like niches that incorporate signaling from neighboring cells may enable the production of clinically relevant, highly regenerative cells.


Assuntos
Ácido Hialurônico/química , Hidrogéis/química , Células-Tronco Mesenquimais/fisiologia , Medula Óssea/metabolismo , Comunicação Celular , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Glicoproteínas/química , Humanos , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos
11.
Nat Cell Biol ; 17(9): 1205-17, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26280535

RESUMO

Senescent cells secrete a combination of factors collectively known as the senescence-associated secretory phenotype (SASP). The SASP reinforces senescence and activates an immune surveillance response, but it can also show pro-tumorigenic properties and contribute to age-related pathologies. In a drug screen to find new SASP regulators, we uncovered the mTOR inhibitor rapamycin as a potent SASP suppressor. Here we report a mechanism by which mTOR controls the SASP by differentially regulating the translation of the MK2 (also known as MAPKAPK2) kinase through 4EBP1. In turn, MAPKAPK2 phosphorylates the RNA-binding protein ZFP36L1 during senescence, inhibiting its ability to degrade the transcripts of numerous SASP components. Consequently, mTOR inhibition or constitutive activation of ZFP36L1 impairs the non-cell-autonomous effects of senescent cells in both tumour-suppressive and tumour-promoting contexts. Altogether, our results place regulation of the SASP as a key mechanism by which mTOR could influence cancer, age-related diseases and immune responses.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/metabolismo , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteoma/metabolismo , Serina-Treonina Quinases TOR/fisiologia , Animais , Linhagem Celular Tumoral , Senescência Celular , Feminino , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos Nus , Transplante de Neoplasias , Proteínas Serina-Treonina Quinases/genética
12.
J Immunol ; 194(10): 4705-4716, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25840911

RESUMO

Epoxygenases belong to the cytochrome P450 family. They generate epoxyeicosatrienoic acids, which are known to have anti-inflammatory effects, but little is known about their role in macrophage function. By high-throughput sequencing of RNA in primary macrophages derived from rodents and humans, we establish the relative expression of epoxygenases in these cells. Zinc-finger nuclease-mediated targeted gene deletion of the major rat macrophage epoxygenase Cyp2j4 (ortholog of human CYP2J2) resulted in reduced epoxyeicosatrienoic acid synthesis. Cyp2j4(-/-) macrophages have relatively increased peroxisome proliferator-activated receptor-γ levels and show a profibrotic transcriptome, displaying overexpression of a specific subset of genes (260 transcripts) primarily involved in extracellular matrix, with fibronectin being the most abundantly expressed transcript. Fibronectin expression is under the control of epoxygenase activity in human and rat primary macrophages. In keeping with the in vitro findings, Cyp2j4(-/-) rats show upregulation of type I collagen following unilateral ureter obstruction of the kidney, and quantitative proteomics analysis (liquid chromatography-tandem mass spectrometry) showed increased renal type I collagen and fibronectin protein abundance resulting from experimentally induced crescentic glomerulonephritis in these rats. Taken together, these results identify the rat epoxygenase Cyp2j4 as a determinant of a profibrotic macrophage transcriptome that could have implications in various inflammatory conditions, depending on macrophage function.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fibrose/enzimologia , Fibrose/genética , Macrófagos/enzimologia , Animais , Western Blotting , Cromatografia Líquida , Citocromo P-450 CYP2J2 , Família 2 do Citocromo P450 , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Técnicas de Inativação de Genes , Glomerulonefrite/enzimologia , Glomerulonefrite/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Interferência de RNA , Ratos , Ratos Endogâmicos WKY , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem , Transcriptoma
13.
Mol Cell Proteomics ; 14(3): 484-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25532521

RESUMO

Macrophage multinucleation (MM) is essential for various biological processes such as osteoclast-mediated bone resorption and multinucleated giant cell-associated inflammatory reactions. Here we study the molecular pathways underlying multinucleation in the rat through an integrative approach combining MS-based quantitative phosphoproteomics (LC-MS/MS) and transcriptome (high-throughput RNA-sequencing) to identify new regulators of MM. We show that a strong metabolic shift toward HIF1-mediated glycolysis occurs at transcriptomic level during MM, together with modifications in phosphorylation of over 50 proteins including several ARF GTPase activators and polyphosphate inositol phosphatases. We use shortest-path analysis to link differential phosphorylation with the transcriptomic reprogramming of macrophages and identify LRRFIP1, SMARCA4, and DNMT1 as novel regulators of MM. We experimentally validate these predictions by showing that knock-down of these latter reduce macrophage multinucleation. These results provide a new framework for the combined analysis of transcriptional and post-translational changes during macrophage multinucleation, prioritizing essential genes, and revealing the sequential events leading to the multinucleation of macrophages.


Assuntos
Núcleo Celular/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Helicases/metabolismo , Perfilação da Expressão Gênica/métodos , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Proteoma/análise , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA Helicases/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas Nucleares/genética , Fosforilação , Proteínas de Ligação a RNA/genética , Ratos , Ratos Endogâmicos Lew , Ratos Endogâmicos WKY , Análise de Sequência de RNA/métodos , Fatores de Transcrição/genética
14.
Chem Commun (Camb) ; 50(2): 198-200, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24217599

RESUMO

The helix-forming character of a model decapeptide, L4PL4K, is determined in the absence of solvent using ion mobility mass spectrometry, electron capture dissociation and molecular mechanics simulations. Unusual ECD fragmentation patterns dominated by b ions are attributed to helix formation upon electron capture and as a signature of conformational dynamics.


Assuntos
Oligopeptídeos/química , Sequência de Aminoácidos , Gases/química , Espectrometria de Massas , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA