Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 25(5): 1250-1262, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35275608

RESUMO

Islands frequently harbour unique assemblages of species, yet their ecological roles and differences are largely ignored in island biogeography studies. Here, we examine eco-evolutionary processes structuring mammal assemblages on oceanic islands worldwide, including all extant and extinct late-Quaternary mammal species. We find island mammal assemblages tend to be phylogenetically clustered (share more recent evolutionary histories), with clustering increasing with island area and isolation. We also observe that mammal assemblages often tend to be functionally clustered (share similar traits), but the strength of clustering is weak and generally independent from island area or isolation. These findings indicate the important roles of in situ speciation and dispersal filtering in shaping island mammal assemblages under pre-anthropogenic conditions, notably through adaptive radiation of a few clades (e.g. bats, with generally high dispersal abilities). Our study demonstrates that considering the functional and phylogenetic axes of diversity can better reveal the eco-evolutionary processes of island community assembly.


Assuntos
Mamíferos , Animais , Análise por Conglomerados , Ilhas , Oceanos e Mares , Filogenia
2.
PeerJ ; 8: e8225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32025365

RESUMO

Natural history museums are unique spaces for interdisciplinary research and educational innovation. Through extensive exhibits and public programming and by hosting rich communities of amateurs, students, and researchers at all stages of their careers, they can provide a place-based window to focus on integration of science and discovery, as well as a locus for community engagement. At the same time, like a synthesis radio telescope, when joined together through emerging digital resources, the global community of museums (the 'Global Museum') is more than the sum of its parts, allowing insights and answers to diverse biological, environmental, and societal questions at the global scale, across eons of time, and spanning vast diversity across the Tree of Life. We argue that, whereas natural history collections and museums began with a focus on describing the diversity and peculiarities of species on Earth, they are now increasingly leveraged in new ways that significantly expand their impact and relevance. These new directions include the possibility to ask new, often interdisciplinary questions in basic and applied science, such as in biomimetic design, and by contributing to solutions to climate change, global health and food security challenges. As institutions, they have long been incubators for cutting-edge research in biology while simultaneously providing core infrastructure for research on present and future societal needs. Here we explore how the intersection between pressing issues in environmental and human health and rapid technological innovation have reinforced the relevance of museum collections. We do this by providing examples as food for thought for both the broader academic community and museum scientists on the evolving role of museums. We also identify challenges to the realization of the full potential of natural history collections and the Global Museum to science and society and discuss the critical need to grow these collections. We then focus on mapping and modelling of museum data (including place-based approaches and discovery), and explore the main projects, platforms and databases enabling this growth. Finally, we aim to improve relevant protocols for the long-term storage of specimens and tissues, ensuring proper connection with tomorrow's technologies and hence further increasing the relevance of natural history museums.

3.
Mol Phylogenet Evol ; 62(1): 21-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21939777

RESUMO

Horseshoe crabs are marine invertebrates well known for their exceptionally low rates of diversification during their entire evolutionary history. Despite the low species diversity in the group, the phylogenetic relationships among the extant species, especially among the three Asian species are still unresolved. Here we apply a new set of molecular genetic data in combination with a wide geographic sampling of the intra-specific diversity to reinvestigate the evolutionary history among the four living limulid xiphosurans. Our analysis of the intraspecific diversity reveals low levels of connectivity among Carcinoscorpius rotundicauda lineages, which can be explained by the estuarine-bound ecology of this species. Moreover, a clear genetic break across the Thai-Malay Peninsula suggests the presence of cryptic species in C. rotundicauda. The limulid phylogeny finds strong support for a monophyletic genus Tachypleus and a diversification of the three Asian species during the Paleogene period, with speciation events well separated in time by several million years. The tree topology suggests that the three Asian species originated in central South East Asia from a marine stem group that inhabited the shallow coastal waters between the Andaman Sea, Vietnam, and Borneo. In this region C. rotundicauda probably separated from the Tachypleus stem group by invading estuarine habitats, while Tachypleus tridentatus most likely migrated northeast along the Southern coast of China and towards Japan.


Assuntos
Variação Genética , Caranguejos Ferradura/classificação , Caranguejos Ferradura/genética , Filogenia , Animais , Proteínas de Artrópodes/genética , Ásia , Teorema de Bayes , Complexo IV da Cadeia de Transporte de Elétrons/genética , Evolução Molecular , Feminino , Especiação Genética , Funções Verossimilhança , Masculino , Dados de Sequência Molecular , Filogeografia , RNA Ribossômico/genética , Análise de Sequência de DNA
4.
Mol Ecol ; 19(15): 3088-100, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20584144

RESUMO

Populations of the American horseshoe crab, Limulus polyphemus, have declined, but neither the causes nor the magnitude are fully understood. In order to evaluate historic demography, variation at 12 microsatellite DNA loci surveyed in 1218 L. polyphemus sampled from 28 localities was analysed with Bayesian coalescent-based methods. The analysis showed strong declines in population sizes throughout the species' distribution except in the geographically isolated southern-most population in Mexico, where a strong increase in population size was inferred. Analyses suggested that demographic changes in the core of the distribution occurred in association with the recolonization after the Ice Age and also by anthropogenic effects, such as the past overharvest of the species for fertilizer or the current use of the animals as bait for American eel (Anguilla rostrata) and whelk (Busycon spp.) fisheries. This study highlights the importance of considering both climatic changes and anthropogenic effects in efforts to understand population dynamics--a topic which is highly relevant in the ongoing assessments of the effects of climate change and overharvest.


Assuntos
Genética Populacional , Caranguejos Ferradura/genética , Animais , Teorema de Bayes , Mudança Climática , Genótipo , Geografia , Desequilíbrio de Ligação , Repetições de Microssatélites , Modelos Genéticos , Densidade Demográfica , Dinâmica Populacional , Análise de Sequência de DNA
5.
Mol Phylogenet Evol ; 54(3): 1006-15, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19822216

RESUMO

Tardigrades are microscopic ecdysozoans with a worldwide distribution covering marine, limnic and terrestrial habitats. They are regarded as a neglected phylum with regard to studies of their phylogeny. During the last decade molecular data have been included in the investigation of tardigrades. However, the marine arthrotardigrades are still poorly sampled due to their relative rarity, difficult identification and minute size even for tardigrades. In the present study, we have sampled various arthrotardigrades and sequenced the 18S and partial 28S ribosomal subunits. The phylogenetic analyses based on Bayesian inference and maximum parsimony inferred Heterotardigrada (Arthrotardigrada+Echiniscoidea) and Eutardigrada to be monophyletic. Arthrotardigrada was inferred to be paraphyletic as the monophyletic Echiniscoidea is included within the arthrotardigrades. The phylogenetic positions of Stygarctidae and Batillipedidae are poorly resolved with low branch support. The Halechiniscidae is inferred to be polyphyletic as the currently recognized Styraconyxinae is not part of the family. Archechiniscus is the sister-group to the Halechiniscidae and Orzeliscus is placed as one of the basal halechiniscids. The phylogeny of the included eutardigrade taxa resembles the current molecular phylogenies. The genetic diversity within Arthrotardigrada is much larger (18S 15.1-26.5%, 28S 7.2-20.7%) than within Eutardigrada (18S 1.0-12.6%, 28S 1.3-8.2%). This can be explained by higher substitution rates in the arthrotardigrades or by a much younger evolutionary age of the sampled eutardigrades.


Assuntos
Evolução Molecular , Invertebrados/genética , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , Variação Genética , Invertebrados/classificação , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Ribossômico 18S/genética , RNA Ribossômico 28S , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA