Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(6): 113, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693312

RESUMO

Senescent cells have a profound impact on the surrounding microenvironment through the secretion of numerous bioactive molecules and inflammatory factors. The induction of therapy-induced senescence by anticancer drugs is known, but how senescent tumor cells influence the tumor immune landscape, particularly neutrophil activity, is still unclear. In this study, we investigate the induction of cellular senescence in breast cancer cells and the subsequent immunomodulatory effects on neutrophils using the CDK4/6 inhibitor palbociclib, which is approved for the treatment of breast cancer and is under intense investigation for additional malignancies. Our research demonstrates that palbociclib induces a reversible form of senescence endowed with an inflammatory secretome capable of recruiting and activating neutrophils, in part through the action of interleukin-8 and acute-phase serum amyloid A1. The activation of neutrophils is accompanied by the release of neutrophil extracellular trap and the phagocytic removal of senescent tumor cells. These findings may be relevant for the success of cancer therapy as neutrophils, and neutrophil-driven inflammation can differently affect tumor progression. Our results reveal that neutrophils, as already demonstrated for macrophages and natural killer cells, can be recruited and engaged by senescent tumor cells to participate in their clearance. Understanding the interplay between senescent cells and neutrophils may lead to innovative strategies to cope with chronic or tumor-associated inflammation.


Assuntos
Neoplasias da Mama , Senescência Celular , Neutrófilos , Piperazinas , Piridinas , Humanos , Piperazinas/farmacologia , Piridinas/farmacologia , Senescência Celular/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Neutrófilos/metabolismo , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Linhagem Celular Tumoral , Ativação de Neutrófilo/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
2.
Front Immunol ; 14: 1043631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865556

RESUMO

Effective secondary response to antigen is a hallmark of immunological memory. However, the extent of memory CD8 T cell response to secondary boost varies at different times after a primary response. Considering the central role of memory CD8 T cells in long-lived protection against viral infections and tumors, a better understanding of the molecular mechanisms underlying the changing responsiveness of these cells to antigenic challenge would be beneficial. We examined here primed CD8 T cell response to boost in a BALB/c mouse model of intramuscular vaccination by priming with HIV-1 gag-encoding Chimpanzee adenovector, and boosting with HIV-1 gag-encoding Modified Vaccinia virus Ankara. We found that boost was more effective at day(d)100 than at d30 post-prime, as evaluated at d45 post-boost by multi-lymphoid organ assessment of gag-specific CD8 T cell frequency, CD62L-expression (as a guide to memory status) and in vivo killing. RNA-sequencing of splenic gag-primed CD8 T cells at d100 revealed a quiescent, but highly responsive signature, that trended toward a central memory (CD62L+) phenotype. Interestingly, gag-specific CD8 T cell frequency selectively diminished in the blood at d100, relative to the spleen, lymph nodes and bone marrow. These results open the possibility to modify prime/boost intervals to achieve an improved memory CD8 T cell secondary response.


Assuntos
Linfócitos T CD8-Positivos , Imunização Secundária , Células de Memória Imunológica , Vacinas , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Divisão Celular , Camundongos Endogâmicos BALB C , Vacinação , Células de Memória Imunológica/imunologia
3.
Cell Biochem Funct ; 40(7): 718-728, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36069062

RESUMO

Dendritic cells (DCs) are innate immune cells with a central role in immunity and tolerance. Under steady-state, DCs are scattered in tissues as resting cells. Upon infection or injury, DCs get activated and acquire the full capacity to prime antigen-specific CD4+ and CD8+ T cells, thus bridging innate and adaptive immunity. By secreting different sets of cytokines and chemokines, DCs orchestrate diverse types of immune responses, from a classical proinflammatory to an alternative pro-repair one. DCs are highly heterogeneous, and physiological differences in tissue microenvironments greatly contribute to variations in DC phenotype. Oxygen tension is normally low in some lymphoid areas, including bone marrow (BM) hematopoietic niches; nevertheless, the possible impact of tissue hypoxia on DC physiology has been poorly investigated. We assessed whether DCs are hypoxic in BM and spleen, by staining for hypoxia-inducible-factor-1α subunit (HIF-1α), the master regulator of hypoxia-induced response, and pimonidazole (PIM), a hypoxic marker, and by flow cytometric analysis. Indeed, we observed that mouse DCs have a hypoxic phenotype in spleen and BM, and showed some remarkable differences between DC subsets. Notably, DCs expressing membrane c-kit, the receptor for stem cell factor (SCF), had a higher PIM median fluorescence intensity (MFI) than c-kit- DCs, both in the spleen and in the BM. To determine whether SCF (a.k.a. kit ligand) has a role in DC hypoxia, we evaluated molecular pathways activated by SCF in c-kit+ BM-derived DCs cultured in hypoxic conditions. Gene expression microarrays and gene set enrichment analysis supported the hypothesis that SCF had an impact on hypoxia response and inhibited autophagy-related gene sets. Our results suggest that hypoxic response and autophagy, and their modulation by SCF, can play a role in DC homeostasis at the steady state, in agreement with our previous findings on SCF's role in DC survival.


Assuntos
Linfócitos T CD8-Positivos , Fator de Células-Tronco , Animais , Autofagia , Hipóxia Celular , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas , Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Fator de Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA