Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Med Sci Sports Exerc ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935539

RESUMO

INTRODUCTION: This study investigated the magnitude and etiology of neuromuscular fatigue and muscle damage induced by eccentric cycling compared to conventional concentric cycling in patients with breast cancer. METHODS: After a gradual familiarization protocol for eccentric cycling, nine patients with early-stage breast cancer performed three cycling sessions in eccentric or concentric mode. The eccentric cycling session (ECC) was compared to concentric cycling sessions matched for power output (CONpower, 80% of concentric peak power output, 95 ± 23 W) or oxygen uptake (10 ± 2 mL.min.kg-1). Pre- to postexercise changes (30s through 10 min recovery) in knee extensor maximal voluntary contraction force (MVC), voluntary activation, and quadriceps potentiated twitch force (Qtw) were quantified to determine global, central, and peripheral fatigue, respectively. Creatine kinase (CK) and lactate dehydrogenase (LDH) activities were measured in the plasma before and 24 h postexercise as markers of muscle damage. RESULTS: Compared to CONpower (-11 ± 9%) and (-5 ± 5%), the ECC session resulted in a greater decrease in MVC (-25 ± 12%) postexercise (P < 0.001). Voluntary activation decreased only in ECC (-9 ± 6% postexercise, P < 0.001). The decrease in Qtw was similar postexercise between ECC and CONpower (-39 ± 21% and -40 ± 16%, P > 0.99) but lower in (P < 0.001). The CONpower session resulted in twofold greater compared to the ECC and sessions (P < 0.001). No change in CK or LDH activity was reported from preexercise to 24 h postexercise. CONCLUSIONS: The ECC session induced greater neuromuscular fatigue compared to the concentric cycling sessions without generating severe muscle damage. ECC is a promising exercise modality for counteracting neuromuscular maladaptation in patients with breast cancer.

2.
J Cachexia Sarcopenia Muscle ; 15(1): 292-305, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183352

RESUMO

BACKGROUND: Breast cancer patients are commonly treated with sequential administrations of epirubicin-cyclophosphamide (EC) and paclitaxel (TAX). The chronic effect of this treatment induces skeletal muscle alterations, but the specific effect of each chemotherapy agent is unknown. This study aimed to investigate the effect of EC or TAX administration on skeletal muscle homeostasis in breast cancer patients. METHODS: Twenty early breast cancer patients undergoing EC followed by TAX chemotherapies were included. Two groups of 10 women were established and performed vastus lateralis skeletal muscle biopsies either before the first administration (pre) of EC (50 ± 14 years) or TAX (50 ± 16 years) and 4 days later (post). Mitochondrial respiratory capacity recording, reactive oxygen species production, western blotting and histological analyses were performed. RESULTS: Decrease in muscle fibres cross-sectional area was only observed post-EC (-25%; P < 0.001), associated with a reduction in mitochondrial respiratory capacity for the complex I (CI)-linked substrate state (-32%; P = 0.001), oxidative phosphorylation (OXPHOS) by CI (-35%; P = 0.002), CI&CII (-26%; P = 0.022) and CII (-24%; P = 0.027). If H2 O2 production was unchanged post-EC, an increase was observed post-TAX for OXPHOS by CII (+25%; P = 0.022). We found a decrease in makers of mitochondrial content, as shown post-EC by a decrease in the protein levels of citrate synthase (-53%; P < 0.001) and VDAC (-39%; P < 0.001). Despite no changes in markers of mitochondrial fission, a decrease in the expression of a marker of mitochondrial inner-membrane fusion was found post-EC (OPA1; -60%; P < 0.001). We explored markers of mitophagy and found reductions post-EC in the protein levels of PINK1 (-63%; P < 0.001) and Parkin (-56%; P = 0.005), without changes post-TAX. An increasing trend in Bax protein level was found post-EC (+96%; P = 0.068) and post-TAX (+77%; P = 0.073), while the Bcl-2 level was decreased only post-EC (-52%; P = 0.007). If an increasing trend in TUNEL-positive signal was observed post-EC (+68%; P = 0.082), upregulation was highlighted post-TAX (+86%; P < 0.001), suggesting activation of the apoptosis process. CONCLUSIONS: We demonstrated that a single administration of EC induced, in only 4 days, skeletal muscle atrophy and mitochondrial alterations in breast cancer patients. These alterations were characterized by reductions in mitochondrial function and content as well as impairment of mitochondrial dynamics and an increase in apoptosis. TAX administration did not worsen these alterations as this group had already received EC during the preceding weeks. However, it resulted in an increased apoptosis, likely in response to the increased H2 O2 production.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Complexo I de Transporte de Elétrons/metabolismo , Apoptose
3.
Eur J Appl Physiol ; 123(7): 1567-1581, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36939876

RESUMO

PURPOSE: The present study aimed to characterize the etiology of exercise-induced neuromuscular fatigue and its consequences on the force-duration relationship to provide mechanistic insights into the reduced exercise capacity characterizing early-stage breast cancer patients. METHODS: Fifteen early-stage breast cancer patients and fifteen healthy women performed 60 maximal voluntary isometric quadriceps contractions (MVCs, 3 s of contraction, 2 s of relaxation). The critical force was determined as the mean force of the last six contractions, while W' was calculated as the force impulse generated above the critical force. Quadriceps muscle activation during exercise was estimated from vastus lateralis, vastus medialis and rectus femoris EMG. Central and peripheral fatigue were quantified via changes in pre- to postexercise quadriceps voluntary activation (ΔVA) and quadriceps twitch force (ΔQTw) evoked by supramaximal electrical stimulation, respectively. RESULTS: Early-stage breast cancer patients demonstrated lower MVC than controls preexercise (- 15%, P = 0.022), and this reduction persisted throughout the 60-MVC exercise (- 21%, P = 0.002). The absolute critical force was lower in patients than in controls (144 ± 29N vs. 201 ± 47N, respectively, P < 0.001), while W' was similar (P = 0.546), resulting in lower total work done (- 23%, P = 0.001). This was associated with lower muscle activation in the vastus lateralis (P < 0.001), vastus medialis (P = 0.003) and rectus femoris (P = 0.003) in patients. Immediately following exercise, ΔVA showed a greater reduction in patients compared to controls (- 21.6 ± 13.3% vs. - 12.6 ± 7.7%, P = 0.040), while ΔQTw was similar (- 60.2 ± 13.2% vs. - 52.8 ± 19.4%, P = 0.196). CONCLUSION: These findings support central fatigue as a primary cause of the reduction in exercise capacity characterizing early-stage breast cancer patients treated with chemotherapy. CLINICAL TRIALS REGISTRATION: No. NCT04639609-November 20, 2020.


Assuntos
Neoplasias da Mama , Fadiga Muscular , Humanos , Feminino , Fadiga Muscular/fisiologia , Tolerância ao Exercício/fisiologia , Neoplasias da Mama/complicações , Neoplasias da Mama/tratamento farmacológico , Músculo Quadríceps/fisiologia , Contração Isométrica , Eletromiografia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia
4.
Cancer ; 129(2): 215-225, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36397290

RESUMO

BACKGROUND: Fatigue is a hallmark of breast cancer and is associated with skeletal muscle deconditioning. If cancer-related fatigue occurs early during chemotherapy (CT), the development of skeletal muscle deconditioning and its effect on exercise capacity remain unclear. The aim of this study was to investigate the evolution of skeletal muscle deconditioning and exercise capacity in patients with early-stage breast cancer during CT. METHODS: Patients with breast cancer had a visit before undergoing CT, at 8 weeks, and at the end of chemotherapy (post-CT). Body composition was determined through bioelectrical impedance analysis. Knee extensor, handgrip muscle force and fatigue was quantified by performing maximal voluntary isometric contractions and exercise capacity using the 6-min walking test. Questionnaires were also administered to evaluate quality of life, cancer-related fatigue, and physical activity level. RESULTS: Among the 100 patients, reductions were found in muscle mass (-2.3%, p = .002), exercise capacity (-6.7%, p < .001), and knee extensor force (-4.9%, p < .001) post-CT, which occurred within the first 8 weeks of treatment with no further decrease thereafter. If muscle fatigue did not change, handgrip muscle force decreased post-CT only (-2.5%, p = .001), and exercise capacity continued to decrease between 8 weeks and post-CT (-4.6%, p < .001). Quality of life and cancer-related fatigue were impaired after 8 weeks (p < .001) and remained stable thereafter, whereas the physical activity level remained stable during chemotherapy. CONCLUSIONS: Similar to cancer-related fatigue, skeletal muscle deconditioning and reduced exercise capacity occurred early during breast cancer CT. Thus, it appears essential to prevent these alterations through exercise training implemented during CT.


Assuntos
Neoplasias da Mama , Força da Mão , Humanos , Feminino , Força da Mão/fisiologia , Tolerância ao Exercício , Neoplasias da Mama/tratamento farmacológico , Qualidade de Vida , Músculo Esquelético , Quimioterapia Adjuvante/efeitos adversos
5.
Am J Physiol Cell Physiol ; 323(4): C1325-C1332, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094434

RESUMO

Chemotherapy is a common therapy to treat patients with breast cancer but also leads to skeletal muscle deconditioning. Skeletal muscle deconditioning is multifactorial and intermuscular adipose tissue (IMAT) accumulation is closely linked to muscle dysfunction. To date, there is no clinical study available investigating IMAT development through a longitudinal protocol and the underlying mechanisms remain unknown. Our study was dedicated to investigating IMAT content in patients with early breast cancer who were treated with chemotherapy and exploring the subsequent cellular mechanisms involved in its development. We included 13 women undergoing chemotherapy. Muscle biopsies and ultrasonography assessment were performed before and after chemotherapy completion. Histological and Western blotting analyses were conducted. We found a substantial increase in protein levels of three mature adipocyte markers (perilipin, +901%; adiponectin, +135%; FABP4, +321%; P < 0.05). These results were supported by an increase in oil red O-positive staining (+358%; P < 0.05). A substantial increase in PDGFRα protein levels was observed (+476%; P < 0.05) highlighting an increase in fibro-adipogenic progenitors (FAPs) content. The cross-sectional area of the vastus lateralis muscle fibers substantially decreased (-21%; P < 0.01), and muscle architecture was altered, as shown by a decrease in fascicle length (-15%; P < 0.05) and a decreasing trend in muscle thickness (-8%; P = 0.08). We demonstrated both IMAT development and muscle atrophy in patients with breast cancer who were treated with chemotherapy. FAPs, critical stem cells inducing both IMAT development and skeletal muscle atrophy, also increased, suggesting that FAPs likely play a critical role in the skeletal muscle deconditioning observed in patients with breast cancer who were treated with chemotherapy.


Assuntos
Neoplasias da Mama , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/diagnóstico por imagem , Atrofia Muscular/metabolismo , Perilipinas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
6.
J Cachexia Sarcopenia Muscle ; 13(3): 1896-1907, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35373507

RESUMO

BACKGROUND: Chemotherapy is extensively used to treat breast cancer and is associated with skeletal muscle deconditioning, which is known to reduce patients' quality of life, treatment efficiency, and overall survival. To date, skeletal muscle mitochondrial alterations represent a major aspect explored in breast cancer patients; nevertheless, the cellular mechanisms remain relatively unknown. This study was dedicated to investigating overall skeletal muscle mitochondrial homeostasis in early breast cancer patients undergoing chemotherapy, including mitochondrial quantity, function, and dynamics. METHODS: Women undergoing (neo)adjuvant anthracycline-cyclophosphamide and taxane-based chemotherapy participated in this study (56 ± 12 years). Two muscle biopsies were collected from the vastus lateralis muscle before the first and after the last chemotherapy administration. Mitochondrial respiratory capacity, reactive oxygen species production, and western blotting analyses were performed. RESULTS: Among the 11 patients, we found a decrease in key markers of mitochondrial quantity, reaching -52.0% for citrate synthase protein levels (P = 0.02) and -38.2% for VDAC protein levels (P = 0.04). This mitochondrial content loss is likely explained by reduced mitochondrial biogenesis, as evidenced by a decrease in PGC-1α1 protein levels (-29.5%; P = 0.04). Mitochondrial dynamics were altered, as documented by a decrease in MFN2 protein expression (-33.4%; P = 0.01), a key marker of mitochondrial outer membrane fusion. Mitochondrial fission is a prerequisite for mitophagy activation, and no variation was found in either key markers of mitochondrial fission (Fis1 and DRP1) or mitophagy (Parkin, PINK1, and Mul1). Two contradictory hypotheses arise from these results: defective mitophagy, which probably increases the number of damaged and fragmented mitochondria, or a relative increase in mitophagy through elevated mitophagic potential (Parkin/VDAC ratio; +176.4%; P < 0.02). Despite no change in mitochondrial respiratory capacity and COX IV protein levels, we found an elevation in H2 O2 production (P < 0.05 for all substrate additions) without change in antioxidant enzymes. We investigated the apoptosis pathway and found an increase in the protein expression of the apoptosis initiation marker Bax (+72.0%; P = 0.04), without variation in the anti-apoptotic protein Bcl-2. CONCLUSIONS: This study demonstrated major mitochondrial alterations subsequent to chemotherapy in early breast cancer patients: (i) a striking reduction in mitochondrial biogenesis, (ii) altered mitochondrial dynamics and potential mitophagy defects, (iii) exacerbated H2 O2 production, and (iv) increased initiation of apoptosis. All of these alterations likely explain, at least in part, the high prevalence of skeletal muscle and cardiorespiratory deconditioning classically observed in breast cancer patients.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/metabolismo , Feminino , Homeostase , Humanos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Qualidade de Vida , Ubiquitina-Proteína Ligases/metabolismo
7.
Int J Sports Physiol Perform ; 17(3): 423-431, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853187

RESUMO

PURPOSE: This study aimed to determine the contribution of metabolic, cardiopulmonary, neuromuscular, and biomechanical factors to the energy cost (ECR) of graded running in well-trained runners. METHODS: Eight men who were well-trained trail runners (age: 29 [10] y, mean [SD]; maximum oxygen consumption: 68.0 [6.4] mL·min-1·kg-1) completed maximal isometric evaluations of lower limb extensor muscles and 3 randomized trials on a treadmill to determine their metabolic and cardiovascular responses and running gait kinematics during downhill (DR: -15% slope), level (0%), and uphill running (UR: 15%) performed at similar O2 uptake (approximately 60% maximum oxygen consumption). RESULTS: Despite similar O2 demand, ECR was lower in DR versus level running versus UR (2.5 [0.2] vs 3.6 [0.2] vs 7.9 [0.5] J·kg-1·m-1, respectively; all P < .001). Energy cost of running was correlated between DR and level running conditions only (r2 = .63; P = .018). Importantly, while ECR was correlated with heart rate, cardiac output, and arteriovenous O2 difference in UR (all r2 > .50; P < .05), ECR was correlated with lower limb vertical stiffness, ground contact time, stride length, and step frequency in DR (all r2 > .58; P < .05). Lower limb isometric extension torques were not related to ECR whatever the slope. CONCLUSION: The determining physiological factors of ECR might be slope specific, mainly metabolic and cardiovascular in UR versus mainly neuromuscular and mechanical in DR. This possible slope specificity of ECR during incline running opens the way for the implementation of differentiated physiological evaluations and training strategies to optimize performance in well-trained trail runners.


Assuntos
Teste de Esforço , Consumo de Oxigênio , Adulto , Atletas , Fenômenos Biomecânicos , Marcha/fisiologia , Humanos , Masculino , Consumo de Oxigênio/fisiologia
8.
Front Oncol ; 10: 1304, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903594

RESUMO

Background: Cancer cachexia and exacerbated fatigue represent two hallmarks in cancer patients, negatively impacting their exercise tolerance and ultimately their quality of life. However, the characterization of patients' physical status and exercise tolerance and, most importantly, their evolution throughout cancer treatment may represent the first step in efficiently counteracting their development with prescribed and tailored exercise training. In this context, the aim of the PROTECT-01 study will be to investigate the evolution of physical status, from diagnosis to the end of first-line treatment, of patients with one of the three most common cancers (i.e., lung, breast, and colorectal). Methods: The PROTECT-01 cohort study will include 300 patients equally divided between lung, breast and colorectal cancer. Patients will perform a series of assessments at three visits throughout the treatment: (1) between the date of diagnosis and the start of treatment, (2) 8 weeks after the start of treatment, and (3) after the completion of first-line treatment or at the 6-months mark, whichever occurs first. For each of the three visits, subjective and objective fatigue, maximal voluntary force, body composition, cachexia, physical activity level, quality of life, respiratory function, overall physical performance, and exercise tolerance will be assessed. Discussion: The present study is aimed at identifying the nature and severity of maladaptation related to exercise intolerance in the three most common cancers. Therefore, our results should contribute to the delineation of the needs of each group of patients and to the determination of the most valuable exercise interventions in order to counteract these maladaptations. This descriptive and comprehensive approach is a prerequisite in order to elaborate, through future interventional research projects, tailored exercise strategies to counteract specific symptoms that are potentially cancer type-dependent and, in fine, to improve the health and quality of life of cancer patients. Moreover, our concomitant focus on fatigue and cachexia will provide insightful information about two factors that may have substantial interaction but require further investigation. Trial registration: This prospective study has been registered at ClinicalTrials.gov (NCT03956641), May, 2019.

9.
Front Physiol ; 8: 523, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790926

RESUMO

Whether and how moderate exercise might allow for accelerated limb recovery in chronic critical limb ischemia (CLI) remains to be determined. Chronic CLI was surgically induced in mice, and the effect of moderate exercise (training five times per week over a 3-week period) was investigated. Tissue damages and functional scores were assessed on the 4th, 6th, 10th, 20th, and 30th day after surgery. Mice were sacrificed 48 h after the last exercise session in order to assess muscle structure, mitochondrial respiration, calcium retention capacity, oxidative stress and transcript levels of genes encoding proteins controlling mitochondrial functions (PGC1α, PGC1ß, NRF1) and anti-oxidant defenses markers (SOD1, SOD2, catalase). CLI resulted in tissue damages and impaired functional scores. Mitochondrial respiration and calcium retention capacity were decreased in the ischemic limb of the non-exercised group (Vmax = 7.11 ± 1.14 vs. 9.86 ± 0.86 mmol 02/min/g dw, p < 0.001; CRC = 7.01 ± 0.97 vs. 11.96 ± 0.92 microM/mg dw, p < 0.001, respectively). Moderate exercise reduced tissue damages, improved functional scores, and restored mitochondrial respiration and calcium retention capacity in the ischemic limb (Vmax = 9.75 ± 1.00 vs. 9.82 ± 0.68 mmol 02/min/g dw; CRC = 11.36 ± 1.33 vs. 12.01 ± 1.24 microM/mg dw, respectively). Exercise also enhanced the transcript levels of PGC1α, PGC1ß, NRF1, as well as SOD1, SOD2, and catalase. Moderate exercise restores mitochondrial respiration and calcium retention capacity, and it has beneficial functional effects in chronic CLI, likely by stimulating reactive oxygen species-induced biogenesis and anti-oxidant defenses. These data support further development of exercise therapy even in advanced peripheral arterial disease.

10.
Cell Stem Cell ; 9(2): 131-43, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21816364

RESUMO

Anticancer therapies, such as targeting of STAT3 or the use of anthracyclins (doxorubicin), can induce cardiomyopathy. In mice prone to developing heart failure as a result of reduced cardiac STAT3 expression (cardiomyocyte-restricted deficiency of STAT3) or treatment with doxorubicin, we observed impaired endothelial differentiation capacity of Sca-1(+) cardiac progenitor cells (CPCs) in conjunction with attenuated CCL2/CCR2 activation. Mice in both models also displayed reduced erythropoietin (EPO) levels in the cardiac microenvironment. EPO binds to CPCs and seems to be responsible for maintaining an active CCL2/CCR2 system. Supplementation with the EPO derivative CERA in a hematocrit-inactive low dose was sufficient to upregulate CCL2, restore endothelial differentiation of CPCs, and preserve the cardiac microvasculature and cardiac function in both mouse models. Thus, low-dose EPO treatment could potentially be exploited as a therapeutic strategy to reduce the risk of heart failure in certain treatment regimens.


Assuntos
Antineoplásicos/efeitos adversos , Diferenciação Celular/efeitos dos fármacos , Células Endoteliais/citologia , Eritropoetina/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Miocárdio/patologia , Células-Tronco/citologia , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Antígenos Ly/metabolismo , Capilares/efeitos dos fármacos , Capilares/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Eritropoetina/uso terapêutico , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Deleção de Genes , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/fisiopatologia , Testes de Função Cardíaca/efeitos dos fármacos , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Especificidade de Órgãos/efeitos dos fármacos , Pericitos/citologia , Pericitos/efeitos dos fármacos , Receptores CCR2/metabolismo , Receptores da Eritropoetina/metabolismo , Fator de Transcrição STAT3/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Análise de Sobrevida , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
J Biomed Biotechnol ; 2010: 137817, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20414335

RESUMO

Erythropoietin (Epo) and vascular growth factor (VEGF) are known to be involved in the regulation of cellular activity when oxygen transport is reduced as in anaemia or hypoxic conditions. Because it has been suggested that Epo could play a role in skeletal muscle development, regeneration, and angiogenesis, we aimed to assess Epo deficiency in both normoxia and hypoxia by using an Epo-deficient transgenic mouse model (Epo-TAg(h)). Histoimmunology, ELISA and real time RT-PCR did not show any muscle fiber atrophy or accumulation of active HIF-1alpha but an improvement of microvessel network and an upregulation of VEGFR2 mRNA in Epo-deficient gastrocnemius compared with Wild-Type one. In hypoxia, both models exhibit an upregulation of VEGF120 and VEGFR2 mRNA but no accumulation of Epo protein. EpoR mRNA is not up-regulated in both Epo-deficient and hypoxic gastrocnemius. These results suggest that muscle deconditioning observed in patients suffering from renal failure is not due to Epo deficiency.


Assuntos
Eritropoetina/fisiologia , Hipóxia/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Análise de Variância , Animais , Eritropoetina/sangue , Eritropoetina/genética , Eritropoetina/metabolismo , Histocitoquímica , Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microvasos/crescimento & desenvolvimento , Microvasos/metabolismo , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Atrofia Muscular , Neovascularização Fisiológica/fisiologia , Receptores da Eritropoetina/metabolismo , Sarcômeros , Estatísticas não Paramétricas , Regulação para Cima , Fatores de Crescimento do Endotélio Vascular/genética , Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Am J Physiol Regul Integr Comp Physiol ; 296(3): R801-11, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19109375

RESUMO

Anemia and hypoxia in rats result in an increase in factors potentially involved in cerebral angiogenesis. Therefore, the aim of this study was to assess the effect of chronic anemia and/or chronic hypoxia on cerebral cellular responses and angiogenesis in wild-type and anemic transgenic mice. These studies were done in erythropoietin-deficient mice (Epo-TAg(h)) in normoxia and following acute (one day) and chronic (14 days, barometric pressure = 420 mmHg) hypoxia. In normoxia, Epo-TAg(h) mice showed an increase in transcript and protein levels of hypoxia-inducible factor 1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), erythropoietin receptors (EpoR), phospho-STAT-5/STAT-5 ratio, and neuronal neuronal nitric oxide synthase (nNOS) along with a higher cerebral capillary density. In wild-type (WT) mice, acute hypoxia increased all of the studied factors, while in chronic hypoxia, HIF-1alpha, EpoR, phospho-STAT-5/STAT-5 ratio, nNOS, and inducible NOS remained elevated, with an increase in capillary density. Surprisingly, in Epo-TAg(h) mice, chronic hypoxia did not further increase any factor except the nitric oxide metabolites, while HIF-1alpha, EpoR, and phospho-STAT-5/STAT-5 ratio were reduced. Normoxic Epo-TAg(h) mice developed cerebral angiogenesis through the HIF-1alpha/VEGF pathway. In acute hypoxia, WT mice up-regulated all of the studied factors, including cerebral NO. Polycythemia and angiogenesis occurred with acclimatization to chronic hypoxia only in WT mice. In Epo-TAg(h), the decrease in HIF-1alpha, VEGF proteins, and phospho-STAT-5 ratio in chronic hypoxia suggest that neuroprotective and angiogenesis pathways are altered.


Assuntos
Anemia/fisiopatologia , Encéfalo/fisiopatologia , Eritropoetina/deficiência , Eritropoetina/genética , Hipóxia/fisiopatologia , Animais , Peso Corporal/fisiologia , Córtex Cerebral/metabolismo , Doença Crônica , Eritropoetina/metabolismo , Hemoglobinas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imunoensaio , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Óxido Nítrico/metabolismo , RNA/biossíntese , RNA/isolamento & purificação , Receptores da Eritropoetina/biossíntese , Receptores da Eritropoetina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT5/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
J Appl Physiol (1985) ; 100(1): 20-5, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16179398

RESUMO

Our laboratory has previously shown an attenuation of hypoxic pulmonary hypertension by exercise training (ET) (Henderson KK, Clancy RL, and Gonzalez NC. J Appl Physiol 90: 2057-2062, 2001), although the mechanism was not determined. The present study examined the effect of ET on the pulmonary arterial pressure (Pap) response of rats to short- and long-term hypoxia. After 3 wk of treadmill training, male rats were divided into two groups: one (HT) was placed in hypobaric hypoxia (380 Torr); the second remained in normoxia (NT). Both groups continued to train in normoxia for 10 days, after which they were studied at rest and during hypoxic and normoxic exercise. Sedentary normoxic (NS) and hypoxic (HS) littermates were exposed to the same environments as their trained counterparts. Resting and exercise hypoxic arterial P(O2) were higher in NT and HT than in NS and HS, respectively, although alveolar ventilation of trained rats was not higher. Lower alveolar-arterial P(O2) difference and higher effective lung diffusing capacity for O2 in NT vs. NS and in HT vs. HS suggest ET improved efficacy of gas exchange. Pap and Pap/cardiac output were lower in NT than NS in hypoxia, indicating that ET attenuates the initial vasoconstriction of hypoxia. However, ET had no effect on chronic hypoxic pulmonary hypertension: Pap and Pap/cardiac output in hypoxia were similar in HS vs HT. However, right ventricular weight was lower in HT than in HS, although Pap was not different. Because ET attenuates the initial pulmonary vasoconstriction of hypoxia, development of pulmonary hypertension may be delayed in HT rats, and the time during which right ventricular afterload is elevated may be shorter in this group. ET effects may improve the response to acute hypoxia by increasing efficacy of gas exchange and lowering right ventricular work.


Assuntos
Terapia por Exercício/métodos , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/terapia , Hipóxia/fisiopatologia , Hipóxia/terapia , Condicionamento Físico Animal/métodos , Troca Gasosa Pulmonar , Doença Aguda , Adaptação Fisiológica , Animais , Pressão Sanguínea , Doença Crônica , Hipertensão Pulmonar/etiologia , Hipóxia/classificação , Hipóxia/complicações , Masculino , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA