Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Int J Mol Sci ; 25(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39201680

RESUMO

Endometriosis is one of the most common causes of chronic pelvic pain and infertility that affects 10% of women of reproductive age. It is currently defined as the presence of endometrial epithelial and stromal cells at ectopic sites; however, advances in endometriosis research have some authors believing that endometriosis should be re-defined as "a fibrotic condition in which endometrial stroma and epithelium can be identified". microRNAs (miRNAs) are regulatory molecules that potentially play a role in endometriotic lesion development. There is evidence that suggests that miRNAs, including microRNA-21 (miR-21), participate in fibrotic processes in different organs, including the heart, kidney, liver and lungs. The objective of this study was to understand the role of miR-21 and the mechanisms that can contribute to the development of fibrosis by determining how IL-6 regulates miR-21 expression and how this miRNA regulates the transforming growth factor beta (TGF-ß) signaling pathway to promote fibrosis. We investigated the expression of miR-21 in the baboon and mouse model of endometriosis and its correlation with fibrosis. We demonstrated that inflammation and fibrosis are present at a very early stage of endometriosis and that the inflammatory environment in the peritoneal cavity, which includes interleukin 6 (IL-6), can regulate the expression of miR-21 in vitro and in vivo.


Assuntos
Endometriose , Fibrose , Interleucina-6 , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino , Endometriose/genética , Endometriose/metabolismo , Endometriose/patologia , Animais , Interleucina-6/metabolismo , Interleucina-6/genética , Camundongos , Humanos , Regulação da Expressão Gênica , Papio , Endométrio/metabolismo , Endométrio/patologia , Transdução de Sinais , Modelos Animais de Doenças , Fator de Crescimento Transformador beta/metabolismo
2.
F S Sci ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025326

RESUMO

OBJECTIVE: To study the possible role for HMGA2 overexpression in differentiated myometrial cells and its potential to induce a stem cell-like or dedifferentiating phenotype and drive fibroid development. DESIGN: Myometrial cells were immortalized and transduced with an HMGA2 lentivirus to produce HMGA2hi cells. In vitro stem cell assays were conducted, and ribonucleic acid from HMGA2hi and control cells as well as fibroid-free myometrial and HMGA2 fibroid (HMGA2F) tissues were submitted for ribonucleic acid sequencing. SETTING: University research laboratory. PATIENT(S): Women who underwent hysterectomy for symptomatic uterine fibroids or other gynecological conditions. INTERVENTION(S): Not applicable. MAIN OUTCOME MEASURE(S): In vitro stem cell-like properties from myometrial cell lines. Ribonucleic acid sequencing and collagen production of HMGA2-overexpressing primary leiomyoma tissue and cell lines. RESULT(S): HMGA2hi cells had enhanced self-renewal capacity, decreased proliferation, and a greater ability to differentiate into other mesenchymal cell types. HMGA2hi cells exhibited a stem cell-like signature and shared transcriptomic similarities with HMGA2F. Moreover, dysregulated extracellular matrix pathways were observed in both HMGA2hi cells and HMGA2F. CONCLUSION(S): Our findings show that HMGA2 overexpression may drive myometrial cells to dedifferentiate into a more plastic phenotype and provide evidence for an alternative mechanism for fibroid etiology, suggesting that fibroids arise not only from a mutated stem cell but also from a mutated differentiated myometrial cell.

3.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892003

RESUMO

Endometriosis is one of the most common causes of chronic pelvic pain and infertility, affecting 10% of women of reproductive age. A delay of up to 9 years is estimated between the onset of symptoms and the diagnosis of endometriosis. Endometriosis is currently defined as the presence of endometrial epithelial and stromal cells at ectopic sites; however, advances in research on endometriosis have some authors believing that endometriosis should be re-defined as "a fibrotic condition in which endometrial stroma and epithelium can be identified". There are several theories on the etiology of the disease, but the origin of endometriosis remains unclear. This review addresses the role of microRNAs (miRNAs), which are naturally occurring post-transcriptional regulatory molecules, in endometriotic lesion development, the inflammatory environment within the peritoneal cavity, including the role that cytokines play during the development of the disease, and how animal models have helped in our understanding of the pathology of this enigmatic disease.


Assuntos
Endometriose , MicroRNAs , Endometriose/patologia , Endometriose/metabolismo , Endometriose/genética , Endometriose/fisiopatologia , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Endométrio/metabolismo , Endométrio/patologia , Citocinas/metabolismo , Modelos Animais de Doenças
4.
bioRxiv ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712187

RESUMO

Uterine fibroids are prevalent benign tumors in women that exhibit considerable heterogeneity in clinical presentation and molecular characteristics, necessitating a deeper understanding of their etiology and pathogenesis. HMGA2 overexpression has been associated with fibroid development, yet its precise role remains elusive. Mutations in fibroids are mutually exclusive and largely clonal, suggesting that tumors originate from a single mutant cell. We explored a possible role for HMGA2 overexpression in differentiated myometrial cells, hypothesizing its potential to induce a stem cell-like or dedifferentiating phenotype and drive fibroid development. Myometrial cells were immortalized and transduced with an HMGA2 lentivirus to produce HMGA2hi cells. In vitro stem cell assays were conducted and RNA from HMGA2hi and control cells and fibroid-free myometrial and HMGA2 fibroid (HMGA2F) tissues were submitted for RNA-sequencing. HMGA2hi cells have enhanced self-renewal capacity, decreased proliferation, and have a greater ability to differentiate into other mesenchymal cell types. HMGA2hi cells exhibit a stem cell-like signature and share transcriptomic similarities with HMGA2F. Moreover, dysregulated extracellular matrix pathways are observed in both HMGA2hi cells and HMGA2F. Our findings suggest that HMGA2 overexpression drives myometrial cells to dedifferentiate into a more plastic phenotype and underscore a pivotal role for HMGA2 in fibroid pathogenesis.

5.
FASEB J ; 37(7): e22983, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249327

RESUMO

In mammals, the endometrium undergoes dynamic changes in response to estrogen and progesterone to prepare for blastocyst implantation. Two distinct types of endometrial epithelial cells, the luminal (LE) and glandular (GE) epithelial cells play different functional roles during this physiological process. Previously, we have reported that Notch signaling plays multiple roles in embryo implantation, decidualization, and postpartum repair. Here, using the uterine epithelial-specific Ltf-iCre, we showed that Notch1 signaling over-activation in the endometrial epithelium caused dysfunction of the epithelium during the estrous cycle, resulting in hyper-proliferation. During pregnancy, it further led to dysregulation of estrogen and progesterone signaling, resulting in infertility in these animals. Using 3D organoids, we showed that over-activation of Notch1 signaling increased the proliferative potential of both LE and GE cells and reduced the difference in transcription profiles between them, suggesting disrupted differentiation of the uterine epithelium. In addition, we demonstrated that both canonical and non-canonical Notch signaling contributed to the hyper-proliferation of GE cells, but only the non-canonical pathway was involved with estrogen sensitivity in the GE cells. These findings provided insights into the effects of Notch1 signaling on the proliferation, differentiation, and function of the uterine epithelium. This study demonstrated the important roles of Notch1 signaling in regulating hormone response and differentiation of endometrial epithelial cells and provides an opportunity for future studies in estrogen-dependent diseases, such as endometriosis.


Assuntos
Progesterona , Útero , Animais , Feminino , Camundongos , Gravidez , Proliferação de Células , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Epitélio/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo , Progesterona/farmacologia , Progesterona/metabolismo , Útero/metabolismo
6.
Reprod Sci ; 30(10): 2932-2944, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37188982

RESUMO

MicroRNAs (miRs) play an important role in the pathophysiology of endometriosis; however, the role of miR-210 in endometriosis remains unclear. This study explores the role of miR-210 and its targets, IGFBP3 and COL8A1, in ectopic lesion growth and development. Matched eutopic (EuE) and ectopic (EcE) endometrial samples were obtained for analysis from baboons and women with endometriosis. Immortalized human ectopic endometriotic epithelial cells (12Z cells) were utilized for functional assays. Endometriosis was experimentally induced in female baboons (n = 5). Human matched endometrial and endometriotic tissues were obtained from women (n = 9, 18-45 years old) with regular menstrual cycles. Quantitative reverse transcript polymerase chain reaction (RT-qPCR) analysis was performed for in vivo characterization of miR-210, IGFBP3, and COL8A1. In situ hybridization and immunohistochemical analysis were performed for cell-specific localization. Immortalized endometriotic epithelial cell lines (12Z) were utilized for in vitro functional assays. MiR-210 expression was decreased in EcE, while IGFBP3 and COL8A1 expression was increased in EcE. MiR-210 was expressed in the glandular epithelium of EuE but attenuated in those of EcE. IGFBP3 and COL8A1 were expressed in the glandular epithelium of EuE and were increased compared to EcE. MiR-210 overexpression in 12Z cells suppressed IGFBP3 expression and attenuated cell proliferation and migration. MiR-210 repression and subsequent unopposed IGFBP3 expression may contribute to endometriotic lesion development by increasing cell proliferation and migration.


Assuntos
Endometriose , MicroRNAs , Animais , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Endometriose/metabolismo , Papio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Endométrio/metabolismo , Linhagem Celular , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo
7.
JCI Insight ; 8(11)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37104033

RESUMO

The development and progression of endometriotic lesions are poorly understood, but immune cell dysfunction and inflammation are closely associated with the pathophysiology of endometriosis. There is a need for 3D in vitro models to permit the study of interactions between cell types and the microenvironment. To address this, we developed endometriotic spheroids (ES) to explore the role of epithelial-stromal interactions and model peritoneal invasion associated with lesion development. Using a nonadherent microwell culture system, spheroids were generated with immortalized endometriotic epithelial cells (12Z) combined with endometriotic stromal (iEc-ESC) or uterine stromal (iHUF) cell lines. Transcriptomic analysis found 4,522 differentially expressed genes in ES compared with spheroids containing uterine stromal cells. The top increased gene sets were inflammation-related pathways, and an overlap with baboon endometriotic lesions was highly significant. Finally, to mimic invasion of endometrial tissue into the peritoneum, a model was developed with human peritoneal mesothelial cells in an extracellular matrix. Invasion was increased in the presence of estradiol or pro-inflammatory macrophages and suppressed by a progestin. Taken together, our results strongly support the concept that ES are an appropriate model for dissecting mechanisms that contribute to endometriotic lesion development.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/genética , Linhagem Celular , Células Epiteliais/metabolismo , Epitélio/metabolismo , Perfilação da Expressão Gênica
8.
BMC Biol ; 20(1): 209, 2022 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-36153585

RESUMO

BACKGROUND: SWI/SNF (BAF) chromatin remodeling complexes regulate lineage-specific enhancer activity by promoting accessibility for diverse DNA-binding factors and chromatin regulators. Additionally, they are known to modulate the function of the epigenome through regulation of histone post-translational modifications and nucleosome composition, although the way SWI/SNF complexes govern the epigenome remains poorly understood. Here, we investigate the function of ARID1A, a subunit of certain mammalian SWI/SNF chromatin remodeling complexes associated with malignancies and benign diseases originating from the uterine endometrium. RESULTS: Through genome-wide analysis of human endometriotic epithelial cells, we show that more than half of ARID1A binding sites are marked by the variant histone H3.3, including active regulatory elements such as super-enhancers. ARID1A knockdown leads to H3.3 depletion and gain of canonical H3.1/3.2 at ARID1A-bound active regulatory elements, and a concomitant redistribution of H3.3 toward genic elements. ARID1A interactions with the repressive chromatin remodeler CHD4 (NuRD) are associated with H3.3, and ARID1A is required for CHD4 recruitment to H3.3. ZMYND8 interacts with CHD4 to suppress a subset of ARID1A, CHD4, and ZMYND8 co-bound, H3.3+ H4K16ac+ super-enhancers near genes governing extracellular matrix, motility, adhesion, and epithelial-to-mesenchymal transition. Moreover, these gene expression alterations are observed in human endometriomas. CONCLUSIONS: These studies demonstrate that ARID1A-containing BAF complexes are required for maintenance of the histone variant H3.3 at active regulatory elements, such as super-enhancers, and this function is required for the physiologically relevant activities of alternative chromatin remodelers.


Assuntos
Cromatina , Proteínas de Ligação a DNA , Histonas , Fatores de Transcrição , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Histonas/genética , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Nucleossomos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Biol Reprod ; 107(4): 977-983, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35835555

RESUMO

The Notch signaling pathway is required for reproductive success. This pathway activates its transcriptional effector, recombination signal binding protein for immunoglobulin kappa J (Rbpj), to induce transcription of its target genes. This signaling pathway is required for successful decidualization, implantation, and uterine repair following parturition. To identify the compartmental specific roles of the Notch signaling pathway in the establishment of pregnancy, we generated epithelial and decidual stromal cell specific knockouts of Rbpj utilizing lactoferrin iCre and Prl8A2 iCre, respectively. Both conditional knockout mouse models were fertile. The Rbpj epithelial knockout mice displayed 27% resorption sites at E15.5, but this did not significantly impact the number of live born pups compared with controls. In addition, the Rbpj epithelial knockout mice displayed increased estrogen signaling in their stromal compartment. Given that both mouse models exhibited fertility comparable to control animals, the epithelial and stromal specific nature of the iCre recombinases utilized, and previously published Rbpj total uterine knockout mouse models, we conclude that Notch effector Rbpj signaling is required at the initiation of pregnancy to support decidualization in stromal cells, but that Rbpj is not required in the epithelial compartment nor is it required for post-implantation pregnancy success.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Receptores Notch , Animais , Proteínas de Transporte/metabolismo , Estrogênios , Feminino , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Lactoferrina/metabolismo , Camundongos , Camundongos Knockout , Gravidez , Receptores Notch/genética , Receptores Notch/metabolismo , Recombinases/genética , Recombinases/metabolismo , Recombinação Genética , Transdução de Sinais/fisiologia , Células Estromais/metabolismo
10.
Reproduction ; 164(2): 41-54, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35679138

RESUMO

Although a non-malignant gynecological disorder, endometriosis displays some pathogenic features of malignancy, such as cell proliferation, migration, invasion and adaptation to hypoxia. Current treatments of endometriosis include pharmacotherapy and/or surgery, which are of limited efficacy and often associated with adverse side effects. Therefore, to develop more effective therapies to treat this disease, a broader understanding of the underlying molecular mechanisms that underpin endometriosis needs to be attained. Using immortalized human endometriotic epithelial and stromal cell lines, we demonstrate that the early growth response 1 (EGR1) transcription factor is essential for cell proliferation, migration and invasion, which represent some of the pathogenic properties of endometriotic cells. Genome-wide transcriptomics identified an EGR1-dependent transcriptome in human endometriotic epithelial cells that potentially encodes a diverse spectrum of proteins that are known to be involved in tissue pathologies. To underscore the utility of this transcriptomic data set, we demonstrate that carbonic anhydrase 9 (CA9), a homeostatic regulator of intracellular pH, is not only a molecular target of EGR1 but is also important for maintaining many of the cellular properties of human endometriotic epithelial cells that are also ascribed to EGR1. Considering therapeutic intervention strategies are actively being developed for EGR1 and CAIX in the treatment of other pathologies, we believe EGR1 and its transcriptome (which includes CA9) will offer not only a new conceptual framework to advance our understanding of endometriosis but will also furnish new molecular vulnerabilities to be leveraged as potential therapeutic options in the future treatment of endometriosis.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce , Endometriose , Movimento Celular , Proteína 1 de Resposta de Crescimento Precoce/genética , Endometriose/metabolismo , Endométrio/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Células Estromais/metabolismo , Fatores de Transcrição/metabolismo
11.
Cells ; 11(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35326450

RESUMO

Endometrial cancer (EC) is characterized by high estrogen levels unopposed by progesterone. Treatment with progestins is standard for early EC, but the response to progestins is dependent on progesterone receptor (PGR) expression. Here, we show that the expression of PGR in endometrial epithelial cells is dependent on ARID1A, a DNA-binding subunit of the SWI/SNF chromatin-remodeling complex that is commonly mutated in EC. In endometrial epithelial cells with estrogen receptor overexpression, we find that ARID1A promotes estrogen signaling and regulates common gene expression programs. Normally, endometrial epithelial cells expressing estrogen receptors respond to estrogen by upregulating the PGR. However, when ARID1A expression is lost, upregulation of PGR expression is significantly reduced. This phenomenon can also occur following the loss of the SWI/SNF subunit BRG1, suggesting a role for ARID1A- and BRG1-containing complexes in PGR regulation. We find that PGR is regulated by a bivalent promoter, which harbors both H3K4me3 and H3K27me3 histone tail modifications. H3K27me3 is deposited by EZH2, and inhibition of EZH2 in the context of ARID1A loss results in restoration of estrogen-induced PGR expression. Our results suggest a role for ARID1A deficiency in the loss of PGR in late-stage EC and a therapeutic utility for EZH2 inhibitors in this disease.


Assuntos
Histonas , Proteínas Nucleares , Estrogênios/farmacologia , Feminino , Humanos , Proteínas Nucleares/metabolismo , Progestinas/farmacologia , Receptores de Progesterona/metabolismo
12.
Nat Commun ; 13(1): 1101, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232969

RESUMO

Female subfertility is highly associated with endometriosis. Endometrial progesterone resistance is suggested as a crucial element in the development of endometrial diseases. We report that MIG-6 is downregulated in the endometrium of infertile women with endometriosis and in a non-human primate model of endometriosis. We find ERBB2 overexpression in the endometrium of uterine-specific Mig-6 knockout mice (Pgrcre/+Mig-6f/f; Mig-6d/d). To investigate the effect of ERBB2 targeting on endometrial progesterone resistance, fertility, and endometriosis, we introduce Erbb2 ablation in Mig-6d/d mice (Mig-6d/dErbb2d/d mice). The additional knockout of Erbb2 rescues all phenotypes seen in Mig-6d/d mice. Transcriptomic analysis shows that genes differentially expressed in Mig-6d/d mice revert to their normal expression in Mig-6d/dErbb2d/d mice. Together, our results demonstrate that ERBB2 overexpression in endometrium with MIG-6 deficiency causes endometrial progesterone resistance and a nonreceptive endometrium in endometriosis-related infertility, and ERBB2 targeting reverses these effects.


Assuntos
Endometriose , Infertilidade Feminina , Peptídeos e Proteínas de Sinalização Intracelular , Receptor ErbB-2 , Doenças Uterinas , Animais , Endometriose/genética , Endometriose/metabolismo , Endométrio/anormalidades , Endométrio/metabolismo , Feminino , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Progesterona/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Doenças Uterinas/genética , Doenças Uterinas/metabolismo
13.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807176

RESUMO

Uterine fibroid tissues are often compared to their matched myometrium in an effort to understand their pathophysiology, but it is not clear whether the myometria of uterine fibroid patients represent truly non-disease control tissues. We analyzed the transcriptomes of myometrial samples from non-fibroid patients (M) and compared them with fibroid (F) and matched myometrial (MF) samples to determine whether there is a phenotypic difference between fibroid and non-fibroid myometria. Multidimensional scaling plots revealed that M samples clustered separately from both MF and F samples. A total of 1169 differentially expressed genes (DEGs) (false discovery rate < 0.05) were observed in the MF comparison with M. Overrepresented Gene Ontology terms showed a high concordance of upregulated gene sets in MF compared to M, particularly extracellular matrix and structure organization. Gene set enrichment analyses showed that the leading-edge genes from the TGFß signaling and inflammatory response gene sets were significantly enriched in MF. Overall comparison of the three tissues by three-dimensional principal component analyses showed that M, MF, and F samples clustered separately from each other and that a total of 732 DEGs from F vs. M were not found in the F vs. MF, which are likely understudied in the pathogenesis of uterine fibroids and could be key genes for future investigation. These results suggest that the transcriptome of fibroid-associated myometrium is different from that of non-diseased myometrium and that fibroid studies should consider using both matched myometrium and non-diseased myometrium as controls.


Assuntos
Leiomioma/genética , Miométrio/patologia , Útero/patologia , Adulto , Feminino , Perfilação da Expressão Gênica/métodos , Estudos de Associação Genética/métodos , Genótipo , Humanos , Leiomioma/patologia , Pessoa de Meia-Idade , Miométrio/metabolismo , Fenótipo , Análise de Componente Principal/métodos , Transcriptoma/genética , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Útero/metabolismo
14.
Mol Hum Reprod ; 27(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-33693877

RESUMO

About 40% of women with infertility and 70% of women with pelvic pain suffer from endometriosis. The pregnancy rate in women undergoing IVF with low endometrial integrin αvß3 (LEI) expression is significantly lower compared to the women with high endometrial integrin αvß3 (HEI). Mid-secretory eutopic endometrial biopsies were obtained from healthy controls (C; n=3), and women with HEI (n=4) and LEI (n=4) and endometriosis. Changes in gene expression were assessed using human gene arrays and DNA methylation data were derived using 385 K Two-Array Promoter Arrays. Transcriptional analysis revealed that LEI and C groups clustered separately with 396 differentially expressed genes (DEGs) (P<0.01: 275 up and 121 down) demonstrating that transcriptional and epigenetic changes are distinct in the LEI eutopic endometrium compared to the C and HEI group. In contrast, HEI vs C and HEI vs LEI comparisons only identified 83 and 45 DEGs, respectively. The methylation promoter array identified 1304 differentially methylated regions in the LEI vs C comparison. The overlap of gene and methylation array data identified 14 epigenetically dysregulated genes and quantitative RT-PCR analysis validated the transcriptomic findings. The analysis also revealed that aryl hydrocarbon receptor (AHR) was hypomethylated and significantly overexpressed in LEI samples compared to C. Further analysis validated that AHR transcript and protein expression are significantly (P<0.05) increased in LEI women compared to C. The increase in AHR, together with the altered methylation status of the 14 additional genes, may provide a diagnostic tool to identify the subset of women who have endometriosis-associated infertility.


Assuntos
Metilação de DNA , Endometriose/genética , Endométrio/metabolismo , Infertilidade Feminina/etiologia , Integrina alfaVbeta3/biossíntese , Transcriptoma , Adolescente , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biópsia , Regulação para Baixo , Endometriose/complicações , Endometriose/metabolismo , Endométrio/patologia , Feminino , Humanos , Infertilidade Feminina/genética , Integrina alfaVbeta3/genética , Pessoa de Meia-Idade , Análise de Componente Principal , Receptores de Hidrocarboneto Arílico/biossíntese , Receptores de Hidrocarboneto Arílico/genética , Adulto Jovem
15.
Reprod Sci ; 28(6): 1626-1636, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33533008

RESUMO

The endometrium is one of the most dynamic organs in the human body. Until now, cell lines have furthered the understanding of endometrial biology and associated diseases, but they failed to recapitulate the key physiological aspects of the endometrium, especially as it relates to its complex architecture and functions. Organoid culture systems have become an alternative approach to reproduce biological functions of tissues in vitro. Endometrial organoids have now been established from stem/progenitor cells and/or differentiated cells by several methods, which represents a promising tool to gain a deeper understanding of this dynamic organ. In this review, we will discuss the establishment, characteristics, applications, and potential challenges and directions of endometrial organoids.


Assuntos
Endométrio , Organoides , Animais , Técnicas de Cultura de Células em Três Dimensões , Técnicas de Cultura , Embrião de Mamíferos/fisiologia , Neoplasias do Endométrio , Endometriose , Endométrio/fisiologia , Vesículas Extracelulares , Feminino , Hormônios Esteroides Gonadais/farmacologia , Humanos , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/fisiologia , Síndrome do Ovário Policístico , Gravidez , Células-Tronco , Transcriptoma
16.
FASEB J ; 35(2): e21209, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33222288

RESUMO

Though endometriosis and infertility are clearly associated, the pathophysiological mechanism remains unclear. Previous work has linked endometrial ARID1A loss to endometriosis-related endometrial non-receptivity. Here, we show in mice that ARID1A binds and regulates transcription of the Foxa2 gene required for endometrial gland function. Uterine-specific deletion of Arid1a compromises gland development and diminishes Foxa2 and Lif expression. Deletion of Arid1a with Ltf-iCre in the adult mouse endometrial epithelium preserves the gland development while still compromising the gland function. Mice lacking endometrial epithelial Arid1a are severely sub-fertile due to defects in implantation, decidualization, and endometrial receptivity from disruption of the LIF-STAT3-EGR1 pathway. FOXA2 is also reduced in the endometrium of women with endometriosis in correlation with diminished ARID1A, and both ARID1A and FOXA2 are reduced in nonhuman primates induced with endometriosis. Our findings describe a role for ARID1A in the endometrial epithelium supporting early pregnancy establishment through the maintenance of gland function.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Implantação do Embrião , Endométrio/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Animais , Proteínas de Ligação a DNA/genética , Feminino , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Fatores de Transcrição/genética
17.
Cell Rep ; 33(6): 108366, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33176148

RESUMO

Endometriosis affects 1 in 10 women and is characterized by the presence of abnormal endometrium at ectopic sites. ARID1A mutations are observed in deeply invasive forms of the disease, often correlating with malignancy. To identify epigenetic dependencies driving invasion, we use an unbiased approach to map chromatin state transitions accompanying ARID1A loss in the endometrium. We show that super-enhancers marked by high H3K27 acetylation are strongly associated with ARID1A binding. ARID1A loss leads to H3K27 hyperacetylation and increased chromatin accessibility and enhancer RNA transcription at super-enhancers, but not typical enhancers, indicating that ARID1A normally prevents super-enhancer hyperactivation. ARID1A co-localizes with P300 at super-enhancers, and genetic or pharmacological inhibition of P300 in ARID1A mutant endometrial epithelia suppresses invasion and induces anoikis through the rescue of super-enhancer hyperacetylation. Among hyperactivated super-enhancers, SERPINE1 (PAI-1) is identified as an essential target gene driving ARID1A mutant endometrial invasion. Broadly, our findings provide rationale for therapeutic strategies targeting super-enhancers in ARID1A mutant endometrium.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endometriose/metabolismo , Endométrio/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Endometriose/patologia , Endométrio/patologia , Feminino , Humanos , Camundongos , Mutação , Coelhos , Ratos
18.
Semin Reprod Med ; 38(2-03): 168-178, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33105508

RESUMO

Adenomyosis is a nonmalignant uterine disorder in which endometrial tissue exists within and grows into the myometrium. Animal models have generated limited insight into the still-unclear pathogenesis of adenomyosis, provided a platform for preclinical screening of many drugs and compounds with potential as therapeutics, and elucidated mechanisms underlying the pain and fertility issues that occur in many women with the disease. Spontaneous adenomyosis has been studied in nonhuman primates, primarily in the form of case reports. Adenomyosis is routinely experimentally induced in mice through methods such as neonatal tamoxifen exposure, pituitary engraftment, and human tissue xenotransplantation. Several studies have also reported hormonal or environmental toxicant exposures that give rise to murine adenomyosis, and genetically engineered models have been created that recapitulate the human-like condition, most notably involving alteration of ß-catenin expression. This review describes the animal models for adenomyosis and their contributions to our understanding of the factors underpinning the development of symptoms. Animal models represent a unique opportunity for understanding the molecular basis of adenomyosis and developing efficacious treatment options for affected women. Herein, we assess their different potentials and limitations with regard to identification of new therapeutic interventions and reflect on future directions for research and drug validation.


Assuntos
Adenomiose/patologia , Modelos Animais , Adenomiose/complicações , Animais , Feminino , Humanos , Infertilidade/etiologia , Camundongos , Dor Pélvica/etiologia , Primatas
19.
Reprod Sci ; 27(11): 2082-2091, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32542539

RESUMO

Endometrial-like stromal cells, one of the main components of endometriotic lesions, are an important in vitro model for studying cellular and molecular mechanisms associated with lesion development in endometriosis. However, the short life span of primary endometriotic stromal cells (Ec-ESCs) limits their use. Human telomerase reverse transcriptase (hTERT) plasmids can be used to develop immortalized cell lines. Here we aimed to establish an endometriotic stromal cell line by hTERT immortalization. Primary Ec-ESCs were obtained from a human ovarian endometriotic cyst. The purity was assessed by morphology and the expression of vimentin, cytokeratin, and human interferon-inducible transmembrane protein 1 (hIFITM1). Cells were infected with hTERT lentiviral vector and selected with hygromycin. hTERT mRNA levels were confirmed by RT-qPCR. Immortalized Ec-ESCs (iEc-ESCs) were characterized by examining the expression of morphological markers and key genes of interest, TP53, estrogen receptor ß (ERß), progesterone receptor (PR), and steroidogenic factor-1 (SF-1). Karyotyping and in vitro decidualization studies were also performed. Ec-ESCs were positive for vimentin and hIFITM1 and negative for cytokeratin, indicating that they were representative of Ec-ESC. The fibroblast-like morphology, expression of TP53, ERß, PR, and SF-1 did not change before and after hTERT immortalization. iEc-ESCs showed an impaired decidualization response like primary Ec-ESCs when compared to normal eutopic stromal cells. Karyotyping showed that 15/19 cells had normal female karyotype, while 4/19 cells had partial trisomy 11q. Collectively, we successfully established and characterized an immortalized endometriotic stromal cell line. It is potentially useful as an in vitro experimental model to investigate endometriosis biology.


Assuntos
Técnicas de Cultura de Células/métodos , Endometriose/fisiopatologia , Endométrio/fisiologia , Células Estromais/fisiologia , Linhagem Celular , Feminino , Vetores Genéticos , Humanos , Lentivirus/fisiologia , Plasmídeos , Telomerase
20.
J Clin Endocrinol Metab ; 105(5)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32119078

RESUMO

CONTEXT: NOTCH signaling is activated in endometriotic lesions, but the exact mechanisms remains unclear. IL-6, which is increased in the peritoneal fluid of women with endometriosis, induces NOTCH1 through E-proteins including E2A and HEB in cancer. OBJECTIVE: To study the role of E-proteins in inducing NOTCH1 expression under the regulation of IL-6 in endometriosis. SETTING AND DESIGN: The expression of E-proteins and NOTCH1 was first investigated in endometrium of women with endometriosis and the baboon model of endometriosis. Regulation of E-proteins and NOTCH1 expression was examined after IL-6 stimulation and siRNA mediated inhibition of E2A or/and HEB in human endometriotic epithelial cells (12Z) in vitro, and subsequently following IL-6 treatment in the mouse model of endometriosis in vivo. RESULTS: E2A, HEB, and NOTCH1 were significantly upregulated in glandular epithelium (GE) of ectopic endometrium compared to eutopic endometrium in both women and the baboon model. IL-6 treatment upregulated the expression of NOTCH1 together with E2A and HEB in 12Z cells. Small interfering RNA inhibition of E2A and HEB or HEB alone decreased NOTCH1 expression. Binding efficiency of both E2A and HEB was significantly higher at the binding sites on the human NOTCH1 promoter after IL-6 treatment. Finally, IL-6 treatment resulted in a significantly increased number of endometriotic lesions along with increased expression of E2A, HEB, and NOTCH1 in GE of the lesions compared with the vehicle group in an endometriosis mouse model. CONCLUSIONS: IL-6 induced NOTCH1 expression is mediated by E-proteins in the ectopic GE cells, which may promote endometriotic lesion development.


Assuntos
Endometriose/genética , Interleucina-6/farmacologia , Doenças Peritoneais/genética , Receptor Notch1/genética , Fatores de Transcrição/fisiologia , Adolescente , Adulto , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Estudos de Casos e Controles , Células Cultivadas , Endometriose/metabolismo , Endometriose/patologia , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Endométrio/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/fisiologia , Camundongos , Pessoa de Meia-Idade , Papio , Doenças Peritoneais/metabolismo , Doenças Peritoneais/patologia , Receptor Notch1/efeitos dos fármacos , Receptor Notch1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA