Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0298730, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483868

RESUMO

INTRODUCTION: A lateral flow rapid diagnostic test (RDT) enables detection of measles specific immunoglobulin M (IgM) antibody in serum, capillary blood, and oral fluid with accuracy consistent with enzyme immunoassay (EIA). The objectives of the study were: 1) to assess measles RDT inter-reader agreement between two clinic staff; 2) to assess the sensitivity and specificity of the measles RDT relative to standard surveillance testing in a low transmission setting; 3) to evaluate the knowledge, attitudes, and practices of staff in clinics using the RDT; and 4) to assess the impact of RDT testing on the measles public health response in Malaysia. MATERIALS AND METHODS: The clinic-based prospective evaluation included all suspected measles cases captured by routine measles surveillance at 34 purposely selected clinics in 15 health districts in Malaysia between September 2019 and June 2020, following day-long regional trainings on RDT use. Following informed consent, four specimens were collected from each suspected case, including those routinely collected for standard surveillance [serum for EIA and throat swabs for quantitative reverse transcriptase polymerase chain reaction (RT-qPCR)] together with capillary blood and oral fluid tested with RDTs during the study. RDT impact was evaluated by comparing the rapidity of measles public health response between the pre-RDT implementation (December 2018 to August 2019) and RDT implementation periods (September 2019 to June 2020). To assess knowledge, attitudes, and practices of RDT use, staff involved in the public health management of measles at the selected sites were surveyed. RESULTS: Among the 436 suspect cases, agreement of direct visual readings of measles RDT devices between two health clinic staff was 99% for capillary blood (k = 0.94) and 97% for oral fluid (k = 0.90) specimens. Of the total, 45 (10%) were positive by measles IgM EIA (n = 44, including five also positive by RT-qPCR) or RT-qPCR only (n = 1), and 38 were positive by RDT (using either capillary blood or oral fluid). Using measles IgM EIA or RT-qPCR as reference, RDT sensitivity using capillary blood was 43% (95% CI: 30%-58%) and specificity was 98% (95% CI: 96%-99%); using oral fluid, sensitivity (26%, 95% CI: 15%-40%) and specificity (97%, 95% CI: 94%-98%) were lower. Nine months after training, RDT knowledge was high among staff involved with the public health management of measles (average quiz score of 80%) and was highest among those who received formal training (88%), followed by those trained during supervisory visits (83%). During the RDT implementation period, the number of days from case confirmation until initiation of public response decreased by about 5 days. CONCLUSION: The measles IgM RDT shows >95% inter-reader agreement, high retention of RDT knowledge, and a more rapid public health response. However, despite ≥95% RDT specificity using capillary blood or oral fluid, RDT sensitivity was <45%. Higher-powered studies using highly specific IgM assays and systematic RT-qPCR for case confirmation are needed to establish the role of RDT in measles elimination settings.


Assuntos
Sarampo , Testes de Diagnóstico Rápido , Humanos , Imunoglobulina M , Malásia/epidemiologia , Sarampo/diagnóstico , Sarampo/epidemiologia , Técnicas Imunoenzimáticas , Sensibilidade e Especificidade
2.
J Physiol ; 601(3): 607-629, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321247

RESUMO

In stroke, the sudden deprivation of oxygen to neurons triggers a profuse release of glutamate that induces anoxic depolarization (AD) and leads to rapid cell death. Importantly, the latency of the glutamate-driven AD event largely dictates subsequent tissue damage. Although the contribution of synaptic glutamate during ischaemia is well-studied, the role of tonic (ambient) glutamate has received far less scrutiny. The majority of tonic, non-synaptic glutamate in the brain is governed by the cystine/glutamate antiporter, system xc - . Employing hippocampal slice electrophysiology, we showed that transgenic mice lacking a functional system xc - display longer latencies to AD and altered depolarizing waves compared to wild-type mice after total oxygen deprivation. Experiments which pharmacologically inhibited system xc - , as well as those manipulating tonic glutamate levels and those antagonizing glutamate receptors, revealed that the antiporter's putative effect on ambient glutamate precipitates the ischaemic cascade. As such, the current study yields novel insight into the pathogenesis of acute stroke and may direct future therapeutic interventions. KEY POINTS: Ischaemic stroke remains the leading cause of adult disability in the world, but efforts to reduce stroke severity have been plagued by failed translational attempts to mitigate glutamate excitotoxicity. Elucidating the ischaemic cascade, which within minutes leads to irreversible tissue damage induced by anoxic depolarization, must be a principal focus. Data presented here show that tonic, extrasynaptic glutamate supplied by system xc - synergizes with ischaemia-induced synaptic glutamate release to propagate AD and exacerbate depolarizing waves. Exploiting the role of system xc - and its obligate release of ambient glutamate could, therefore, be a novel therapeutic direction to attenuate the deleterious effects of acute stroke.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Camundongos , Animais , Ácido Glutâmico/metabolismo , Antiporters/metabolismo , Isquemia , Camundongos Transgênicos , Hipóxia , Hipocampo/metabolismo , Oxigênio/metabolismo
3.
Gene Expr Patterns ; 29: 39-46, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29660410

RESUMO

The Drosophila gene c12.2 was isolated in a screen examining mRNA binding proteins. Drosophila c12.2 is the mouse Vwa8 homolog. Various genome-wide associated studies have linked human Vwa8 to both neurological and oncological pathologies, which include autism, bipolar disorder, comorbid migraine, and acute myeloid leukemia, however, the function and role of the VWA8 protein remain poorly understood. To further analyze the Vwa8 gene in mouse, gene structure, protein homology modeling, and gene expression patterns were examined throughout mouse development. Our analyses indicate that the mouse Vwa8 gene produces two transcripts; the full-length Vwa8a is highly expressed relative to the truncated Vwa8b transcript across all developmental time points and tissues analyzed. Protein homology modeling indicates that VWA8a belongs to a novel protein superfamily containing both the midasin and cytoplasmic dynein 1 heavy chain 1 proteins. These data establish the development timeline and expression profile for both Vwa8a and Vwa8b, paving the way for future studies to determine the cellular role(s) of this highly conserved protein family.


Assuntos
Adenosina Trifosfatases/metabolismo , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Adenosina Trifosfatases/genética , Animais , Embrião de Mamíferos/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Isoformas de Proteínas , Análise Espaço-Temporal
4.
Anal Chim Acta ; 853: 660-667, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25467515

RESUMO

Determination of thiols, glutathione (GSH) and cysteine (Cys) are important due to their roles in oxidative stress and aging. Oxidants such as soluble O2 and H2O2 promote oxidation of thiols to disulfide (SS) bonded dimers affecting quantitation accuracy. The method presented here reduces disulfide-bonded species followed by fluorescence labelling of the 29.5 (±18.2) nL hemolymph volumes of individual adult Drosophila Melanogaster. The availability of only tens of nanoliter (nL) samples that are also highly volume variant requires efficient sample handling to improve thiol measurements while minimizing sample dilution. The optimized method presented here utilizes defined lengths of capillaries to meter tris(2-carboxyethyl)phosphine reducing reagent and monobromobimane derivatizing reagent volumes enabling Cys and GSH quantitation with only 20-fold dilution. The nL assay developed here was optimized with respect to reagent concentrations, sample dilution, reaction times and temperatures. Separation and identification of the nL thiol mixtures were obtained with capillary electrophoresis-laser induced fluorescence. To demonstrate the capability of this method total Cys and total GSH were measured in the hemolymph collected from individual adult D. Melanogaster. The thiol measurements were used to compare a mutant fly strain with a non-functional cystine-glutamate transporter (xCT) to its background control. The mutant fly, genderblind (gb), carries a non-functional gene for a protein similar to mammalian xCT whose function is not fully understood. Average concentrations obtained for mutant and control flies are 2.19 (±0.22) and 1.94 (±0.34) mM Cys and 2.14 (±0.60) and 2.08 (±0.71) mM GSH, respectively, and are not significantly different (p>0.05). Statistical analysis showed significant differences in total GSH of males and females independent of the xCT mutation. Overall, the method demonstrates an approach for effective chemical characterization of thiols in nL sample volumes.


Assuntos
Cisteína/análise , Drosophila melanogaster/metabolismo , Eletroforese Capilar , Glutationa/análise , Animais , Animais Geneticamente Modificados/metabolismo , Feminino , Peróxido de Hidrogênio/química , Lasers , Masculino , Oxirredução , Oxigênio/química , Compostos de Sulfidrila/química
5.
J Neurosci ; 34(48): 16093-102, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25429150

RESUMO

Most extracellular glutamate in the brain is released by xCT, a glial antiporter that exports glutamate and imports cystine. The function of xCT, and extracellular glutamate in general, remains unclear. Several lines of evidence suggest that glutamate from xCT could act in a paracrine fashion to suppress glutamatergic synapse strength by triggering removal of postsynaptic glutamate receptors. To test this idea, we used whole-cell patch-clamp electrophysiology and immunohistochemistry to quantify receptor number and synapse function in xCT knock-out mouse hippocampal CA3-CA1 synapses. Consistent with the hypothesis that xCT suppresses glutamate receptor number and synapse strength, xCT knock-out synapses showed increased AMPA receptor abundance with concomitant large enhancements of spontaneous and evoked synaptic transmission. We saw no evidence for changes in GABA receptor abundance or the overall number of glutamatergic synapses. The xCT knock-out phenotype was replicated by incubating slices in the xCT inhibitor (S)-4-carboxyphenylglycine, and consistent with the idea that xCT works by regulating extracellular glutamate, the xCT knock-out phenotype could be reproduced in controls by incubating the slices in glutamate-free aCSF. We conclude that glutamate secreted via xCT suppresses glutamatergic synapse strength by triggering removal of postsynaptic AMPA receptors.


Assuntos
Sistema y+ de Transporte de Aminoácidos/fisiologia , Hipocampo/fisiologia , Neuroglia/fisiologia , Sinapses/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos
6.
Behav Brain Res ; 265: 1-11, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24548853

RESUMO

The slc7a11 gene encodes xCT, an essential component of 'system xc-', a plasma membrane exchanger that imports cystine and exports glutamate. Slc7a11 is expressed primarily in the brain, but its role there is not clear. We performed behavioral tests on two different strains of homozygous slc7a11 mutant mice ('sut' and 'xCT'), as well as heteroallelic offspring of these two strains ('xCT/sut') and their associated genetic backgrounds. Homozygous sut mutant males showed reduced spontaneous alternation in spontaneous alternation tasks as well as reduced movement in an open field maze, but xCT and xCT/sut strains did not show significant changes in these tasks compared to appropriate controls. Neither xCT nor sut mutants showed differences from controls in rotarod tests. Female behavioral phenotypes were independent of estrus cycle stage. To ensure that homozygous xCT, sut, and xCT/sut strains all represent protein null alleles, we measured whole brain xCT protein levels using immunoblots. xCT, sut and xCT/sut strains showed no detectable xCT protein expression, confirming them as null alleles. Previously published microdialysis experiments showed reduced striatal glutamate in xCT mutants. Using the same methods, we measured reduced interstitial glutamate levels in the striatum but not cerebellum of sut mutants. However, we detected no glutamate change in the striatum or cerebellum of sut/xCT mice. We detected no changes in whole brain EAAT-1, -2, or -3 expression. We conclude that the behavioral and chemical differences exist between slc7a11 mutant strains, but we were unable to definitively attribute any of these differences to loss of system xc-.


Assuntos
Sistema y+ de Transporte de Aminoácidos/genética , Estro/genética , Regulação da Expressão Gênica/genética , Atividade Motora/genética , Mutação/genética , Sistema y+ de Transporte de Aminoácidos/deficiência , Análise de Variância , Animais , Encéfalo/metabolismo , Comportamento Exploratório/fisiologia , Feminino , Ácido Glutâmico/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microdiálise , Fatores Sexuais , Fatores de Tempo
7.
Amino Acids ; 38(3): 779-88, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19360460

RESUMO

This study investigated the effect of different sampling environments on hemolymph amino acid content of individual Drosophila melanogaster larvae. Hemolymph was collected from individual third instar larvae under cold-anesthetized, awake, and stress conditions. Qualitative and quantitative hemolymph amino acid analyses were performed via capillary electrophoresis with laser-induced fluorescence detection. The hemolymph amino acid concentrations, particularly arginine, glutamate, and taurine, changed significantly depending on the prior-to-sample-collection environments. Hemolymph amino acid analyses of six different Drosophila genotypes including two control genotypes and four mutant alleles were also carried out. Two mutant genotypes with over and under expression of a putative cystine-glutamate exchanger subunit were significantly different from each other with respect to their hemolymph glutamate, glycine, lysine, and taurine levels. Hemolymph amino acid analyses of stressed larvae of two control and two mutant genotypes indicated that behavior-related hemolymph chemical changes are also genotype dependent.


Assuntos
Aminoácidos/sangue , Comportamento Animal/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Variação Genética , Hemolinfa/química , Estresse Fisiológico , Alelos , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/genética , Anestesia , Animais , Proteínas de Drosophila/genética , Eletroforese Capilar , Genótipo , Larva , Mutação , Estresse Fisiológico/genética
8.
Commun Integr Biol ; 1(1): 14-17, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19430543

RESUMO

Cystine-glutamate transporters import cystine into cells for glutathione synthesis and protection from oxidative stress, but also export significant amounts of glutamate. Increasing evidence suggests that 'ambient extracellular glutamate' secreted by cystine-glutamate transporters in the nervous system modulates glutamatergic synapse strength and behavior. To date, the only cystine-glutamate transporter mutants examined behaviorally are Drosophila genderblind mutants. These animals contain loss-of-function mutations in the 'genderblind' gene, which encodes an xCT subunit essential for cystine-glutamate transporter function. Genderblind was named based on a mutant courtship phenotype: male genderblind mutants are attracted to normally aversive male pheromones and thus court and attempt to copulate with both male and female partners equally. However, genderblind protein is expressed in many parts of the fly brain and thus might be expected to also regulate other behaviors, including behaviors not related to male courtship or chemosensation. Here, we show that genderblind mutants display faster recovery and increased negative geotaxis after strong mechanical stimuli (e.g., they climb faster and farther after vial banging). This phenotype is displayed by both males and females, consistent with strong genderblind expression in both sexes.

9.
Dev Neurobiol ; 68(2): 152-65, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17963254

RESUMO

Neural function is dependent upon the proper formation and development of synapses. We show here that Wnt5 regulates the growth of the Drosophila neuromuscular junction (NMJ) by signaling through the Derailed receptor. Mutations in both wnt5 and drl result in a significant reduction in the number of synaptic boutons. Cell-type specific rescue experiments show that wnt5 functions in the presynaptic motor neuron while drl likely functions in the postsynaptic muscle cell. Epistatic analyses indicate that drl acts downstream of wnt5 to promote synaptic growth. Structure-function analyses of the Drl protein indicate that normal synaptic growth requires the extracellular Wnt inhibitory factor domain and the intracellular domain, which includes an atypical kinase. Our findings reveal a novel signaling mechanism that regulates morphology of the Drosophila NMJ.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Wnt/metabolismo , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mutação/genética , Junção Neuromuscular/genética , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Estrutura Terciária de Proteína/genética , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/genética , Transmissão Sináptica/genética , Proteínas Wnt/química , Proteínas Wnt/genética
10.
J Neurosci ; 27(1): 111-23, 2007 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-17202478

RESUMO

We hypothesized that cystine/glutamate transporters (xCTs) might be critical regulators of ambient extracellular glutamate levels in the nervous system and that misregulation of this glutamate pool might have important neurophysiological and/or behavioral consequences. To test this idea, we identified and functionally characterized a novel Drosophila xCT gene, which we subsequently named "genderblind" (gb). Genderblind is expressed in a previously overlooked subset of peripheral and central glia. Genetic elimination of gb causes a 50% reduction in extracellular glutamate concentration, demonstrating that xCT transporters are important regulators of extracellular glutamate. Consistent with previous studies showing that extracellular glutamate regulates postsynaptic glutamate receptor clustering, gb mutants show a large (200-300%) increase in the number of postsynaptic glutamate receptors. This increase in postsynaptic receptor abundance is not accompanied by other obvious synaptic changes and is completely rescued when synapses are cultured in wild-type levels of glutamate. Additional in situ pharmacology suggests that glutamate-mediated suppression of glutamate receptor clustering depends on receptor desensitization. Together, our results suggest that (1) xCT transporters are critical for regulation of ambient extracellular glutamate in vivo; (2) ambient extracellular glutamate maintains some receptors constitutively desensitized in vivo; and (3) constitutive desensitization of ionotropic glutamate receptors suppresses their ability to cluster at synapses.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Neuroglia/metabolismo , Receptores de Glutamato/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Células Cultivadas , Neurotransmissores/metabolismo , Vesículas Sinápticas/metabolismo , Distribuição Tecidual
11.
J Neurosci ; 25(12): 3199-208, 2005 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-15788777

RESUMO

A Drosophila forward genetic screen for mutants with defective synaptic development identified bad reception (brec). Homozygous brec mutants are embryonic lethal, paralyzed, and show no detectable synaptic transmission at the glutamatergic neuromuscular junction (NMJ). Genetic mapping, complementation tests, and genomic sequencing show that brec mutations disrupt a previously uncharacterized ionotropic glutamate receptor subunit, named here "GluRIID." GluRIID is expressed in the postsynaptic domain of the NMJ, as well as widely throughout the synaptic neuropil of the CNS. In the NMJ of null brec mutants, all known glutamate receptor subunits are undetectable by immunocytochemistry, and all functional glutamate receptors are eliminated. Thus, we conclude that GluRIID is essential for the assembly and/or stabilization of glutamate receptors in the NMJ. In null brec mutant embryos, the frequency of periodic excitatory currents in motor neurons is significantly reduced, demonstrating that CNS motor pattern activity is regulated by GluRIID. Although synaptic development and molecular differentiation appear otherwise unperturbed in null mutants, viable hypomorphic brec mutants display dramatically undergrown NMJs by the end of larval development, suggesting that GluRIID-dependent central pattern activity regulates peripheral synaptic growth. These studies reveal GluRIID as a newly identified glutamate receptor subunit that is essential for glutamate receptor assembly/stabilization in the peripheral NMJ and required for properly patterned motor output in the CNS.


Assuntos
Proteínas de Drosophila/fisiologia , Junção Neuromuscular/fisiologia , Neurópilo/metabolismo , Receptores de Glutamato/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Estimulação Elétrica/métodos , Embrião não Mamífero , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica/métodos , Microscopia Confocal/métodos , Biologia Molecular/métodos , Técnicas de Patch-Clamp/métodos , Subunidades Proteicas/deficiência , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de Glutamato/deficiência , Proteínas Supressoras de Tumor/metabolismo , Proteína de Morte Celular Associada a bcl/deficiência
12.
BMC Biol ; 3: 1, 2005 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-15638945

RESUMO

BACKGROUND: Drosophila discs-large (DLG) is the sole representative of a large class of mammalian MAGUKs, including human DLG, SAP 97, SAP102, and PSD-95. MAGUKs are thought to be critical for postsynaptic assembly at glutamatergic synapses. However, glutamate receptor cluster formation has never been examined in Drosophila DLG mutants. The fly neuromuscular junction (NMJ) is a genetically-malleable model glutamatergic synapse widely used to address questions regarding the molecular mechanisms of synapse formation and growth. Here, we use immunohistochemistry, confocal microscopy, and electrophysiology to examine whether fly NMJ glutamate receptor clusters form normally in DLG mutants. We also address the question of how DLG itself is localized to the synapse by testing whether presynaptic innervation is required for postsynaptic DLG clustering, and whether DLG localization requires the presence of postsynaptic glutamate receptors. RESULTS: There are thought to be two classes of glutamate receptors in the Drosophila NMJ: 1) receptors that contain the subunit GluRIIA, and 2) receptors that contain the subunit GluRIIB. In DLG mutants, antibody staining for the glutamate receptor subunit GluRIIA is normal, but antibody staining for the glutamate receptor subunit GluRIIB is significantly reduced. Electrophysiological analysis shows an overall loss of functional postsynaptic glutamate receptors, along with changes in receptor biophysical properties that are consistent with a selective loss of GluRIIB from the synapse. In uninnervated postsynaptic muscles, neither glutamate receptors nor DLG cluster at synapses. DLG clusters normally in the complete absence of glutamate receptors. CONCLUSIONS: Our results suggest that DLG controls glutamate receptor subunit composition by selectively stabilizing GluRIIB-containing receptors at the synapse. We also show that DLG, like glutamate receptors, is localized only after the presynaptic neuron contacts the postsynaptic cell. We hypothesize that glutamate receptors and DLG cluster in response to parallel signals from the presynaptic neuron, after which DLG regulates subunit composition by stabilizing (probably indirectly) receptors that contain the GluRIIB subunit. The mechanism(s) stabilizing GluRIIA-containing receptors remains unknown.


Assuntos
Proteínas de Drosophila/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Terminações Pré-Sinápticas/fisiologia , Receptores de AMPA/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Potenciais Pós-Sinápticos Excitadores/genética , Genes Supressores de Tumor/fisiologia , Mutação , Receptores de AMPA/genética , Proteínas Supressoras de Tumor/genética
13.
Rev. panam. salud pública ; 14(5): 306-315, nov. 2003. mapas, tab, graf
Artigo em Inglês | LILACS | ID: lil-355946

RESUMO

Se calcula que cada año nacen en el mundo más de 100 000 niños con síndrome de rubéola congénita (SRC). La Organización Mundial de la Salud (OMS) estandarizó en 1998 las definiciones de casos para la vigilancia del SRC y de la rubéola. En 2001, 123 países o territorios notificaron 836 356 casos de rubéola y se espera que el número de países se incremente a medida que se desarrolla, bajo la coordinación de la OMS, una red mundial de laboratorios para la detección del sarampión y la rubéola. Se están realizando investigaciones para mejorar la vigilancia de esta última enfermedad, entre ellas algunos proyectos encaminados a echar a andar la vigilancia y a comparan métodos diagnósticos, así como estudios de epidemiología molecular para lograr entender más a fondo los patrones de circulación del virus de la rubéola en el mundo. En 1996 una encuesta efectuada por la OMS reveló que 78 (36 per ciento) de los 214 países o territorios que habían notificado casos de la enfermedad aplicaban la vacuna contra la rubéola como parte de su régimen de vacunación estándar. Para fines de 2002 un total de 124 de esos 214 (58 per ciento) países o territorios aplicaban la vacuna antirrubeólica cuyo uso depende del nivel de desarrollo económico: 100 per ciento en países industrializados, 71 per ciento en países con economías en transición y 48 per ciento en países en desarrollo. Se dispone de una vacuna inocua y eficaz y se ha demostrado la eficacia de algunas estrategias de vacunación para la prevención de la rubeóla y el SRC. En un trabajo de posición de la OMS se ofrece orientación acerca de lo que entraña, desde el punto de vista programático, emprender la vacunación antirrubeólica. Se trata de una medida cuya efectividad y beneficios superan su costo, pero que exige un continuo fortalecimiento de los servicios de vacunación y sistemas de vigilancia habituales.


Worldwide, it is estimated that there are more than 100 000 infants born with congenital rubella syndrome (CRS) each year. In 1998, standard case definitions for surveillance of CRS and rubella were developed by the World Health Organization (WHO). In 2001, 123 countries/territories reported a total of 836 356 rubella cases. In the future more countries are expected to report on rubella as a global measles/rubella laboratory network is further developed under the coordination of the WHO. Operational research is being conducted to improve rubella surveillance. This includes projects on initiating CRS surveillance, comparative studtes on diagnostic laboratory methods, and molecular epidemiology research to expand the global understanding of patterns of rubella virus circulation. In 1996 a WHO survey found that 78 of 214 reporting countries/territories (36%) were using rubella vaccine in their routine immunization services. By the end of 2002 a total of 124 of the 214 counties/territories (58%) were using rubella vaccine. Rubella vaccine use varies by stage of economic development: 100% for industrialized countries, 71% for countries with economies in transition, and 48% for developing countries. A safe and effective rubella vaccine is available, and there are proven vaccination strategies for preventing rubella and CRS. A WHO position paper provides guidance on programmatic aspects of rubella vaccine introduction. The introduction of rubella vaccine is cost-effective and cost-beneficial but requires ongoing strengthening of routine immunization services and surveillance systems


Assuntos
Humanos , Síndrome da Rubéola Congênita/epidemiologia , Síndrome da Rubéola Congênita/prevenção & controle , Rubéola (Sarampo Alemão)/epidemiologia , Rubéola (Sarampo Alemão)/prevenção & controle , Países em Desenvolvimento , Vigilância da População , Vacina contra Rubéola
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA