RESUMO
Patients with brain tumours are motivated to participate in clinical trials involving repeat tissue sampling. Normalising the use of neoadjuvant and staged surgical trials necessitates collaboration among patients, regulatory agencies, and researchers. Initial and repetitive tissue sampling plays a crucial role in enhancing our understanding of resistance mechanisms and vulnerabilities in brain tumour therapy. Standardising biopsy techniques and ensuring technical uniformity across institutions are vital for effective interinstitutional collaboration. Although liquid biopsy technologies hold promise, they are not yet ready to replace tissue analysis. Clear communication about the risks and benefits of biopsies is essential, particularly regarding potential postoperative deficits. Changes in mindset and neurosurgical culture are imperative to achieve much needed breakthroughs in the development of new, effective therapies for brain tumours.
Assuntos
Neoplasias Encefálicas , Desenvolvimento de Medicamentos , Glioma , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioma/tratamento farmacológico , Glioma/patologia , Antineoplásicos/uso terapêuticoRESUMO
The molecular mechanisms that regulate breast cancer cell (BCC) metastasis and proliferation within the leptomeninges (LM) are poorly understood, which limits the development of effective therapies. In this work, we show that BCCs in mice can invade the LM by abluminal migration along blood vessels that connect vertebral or calvarial bone marrow and meninges, bypassing the blood-brain barrier. This process is dependent on BCC engagement with vascular basement membrane laminin through expression of the neuronal pathfinding molecule integrin α6. Once in the LM, BCCs colocalize with perivascular meningeal macrophages and induce their expression of the prosurvival neurotrophin glial-derived neurotrophic factor (GDNF). Intrathecal GDNF blockade, macrophage-specific GDNF ablation, or deletion of the GDNF receptor neural cell adhesion molecule (NCAM) from BCCs inhibits breast cancer growth within the LM. These data suggest integrin α6 and the GDNF signaling axis as new therapeutic targets against breast cancer LM metastasis.
Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Integrina alfa6 , Neoplasias Meníngeas , Meninges , Vias Neurais , Animais , Feminino , Humanos , Camundongos , Membrana Basal/metabolismo , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Integrina alfa6/metabolismo , Laminina/metabolismo , Macrófagos/metabolismo , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/secundário , Meninges/patologia , Invasividade Neoplásica , Moléculas de Adesão de Célula Nervosa/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Transdução de Sinais , Vias Neurais/metabolismo , Camundongos SCID , Camundongos KnockoutRESUMO
Purpose: Clinical and imaging surveillance of patients with brain metastases is important after stereotactic radiosurgery (SRS) because many will experience intracranial progression (ITCP) requiring multidisciplinary management. The prognostic significance of neurologic symptoms at the time of ITCP is poorly understood. Methods and Materials: This was a multi-institutional, retrospective cohort study from 2015 to 2020, including all patients with brain metastases completing an initial course of SRS. The primary outcome was overall survival (OS) by presence of neurologic symptoms at ITCP. OS, freedom from ITCP (FF-ITCP), and freedom from symptomatic ITCP (FF-SITCP) were assessed via Kaplan-Meier method. Cox proportional hazard models tested parameters impacting FF-ITCP and FF-SITCP. Results: Among 1383 patients, median age was 63.4 years, 55% were female, and common primaries were non-small cell lung (49%), breast (15%), and melanoma (9%). At a median follow-up of 8.72 months, asymptomatic and symptomatic ITCP were observed in 504 (36%) and 194 (14%) patients, respectively. The majority of ITCP were distant ITCP (79.5%). OS was worse with SITCP (median, 10.2 vs 17.9 months, P < .001). SITCP was associated with clinical factors including total treatment volume (P = .012), melanoma histology (P = .001), prior whole brain radiation therapy (P = .003), number of brain metastases (P < .001), interval of 1 to 2 years from primary and brain metastasis diagnosis (P = .012), controlled extracranial disease (P = .042), and receipt of pre-SRS chemotherapy (P = .015). Patients who were younger and received post-SRS chemotherapy (P = .001), immunotherapy (P < .001), and targeted or small-molecule inhibitor therapy (P < .026) had better FF-SITCP. Conclusions: In this cohort study of patients with brain metastases completing SRS, neurologic symptoms at ITCP is prognostic for OS. This data informs post-SRS surveillance in clinical practice as well as future prospective studies needed in the modern management of brain metastases.
RESUMO
Importance: Development of new therapies in melanoma has increased survival, and as a result more patients are living to develop brain metastasis (BrM). Identifying patients at increased risk of BrM is therefore of significant public health importance. Objective: To determine whether history of atopy is associated with improved survival or reduced incidence of BrM in cutaneous melanoma. Design: A retrospective cohort study conducted from June 2022 to March 2024. Setting: Population-based in states with Surveillance, Epidemiology and End Results (SEER) supported cancer registries. Participants: Individuals (≥65 years) diagnosed with cutaneous melanoma between January 1, 2008 and December 31, 2017 that are participants in traditional Medicare. Exposures: Individuals were compared that had history of atopy (allergic rhinitis, atopic dermatitis, asthma, and/or allergic/atopic conjunctivitis) diagnosed prior to melanoma diagnosis, ascertained using ICD-9 or ICD-10 codes in Medicare claims. Main Outcomes and Measures: Primary endpoints were diagnosis with a BrM or death during the follow-up period. Associations between atopy and endpoints were assessed using cox proportional hazards models to estimate hazard ratios (HR) and p-values. Results: A total of 29,956 cutaneous melanoma cases were identified (median age 76, 60% male and 97% non-Hispanic White). Overall, 7.1% developed BrM during follow up. Among the 35% that had history of atopy, the most common condition was atopic dermatitis (19%). After adjustment for demographic and prognostic factors, atopy was associated with a 16% decrease in death (HR=0.84 [95%CI:0.80-0.87], pFDR<0.001). Among those with non-metastatic disease at time of diagnosis, atopy conferred a 15% decrease in cumulative incidence BrM (HR=0.85 [95%CI: 0.76-0.94], pFDR=0.006), with a 25% decrease associated with atopic dermatitis (HR=0.75 [95%CI:0.65-0.86], pFDR<0.001). Among those with metastatic disease at diagnosis (any metastatic site), only those who received immune checkpoint inhibitors had a survival benefit associated with atopy (HR=0.31, [95%CI:0.15-0.64], p=0.001 vs HR=1.41, [95%CI:0.87-2.27], p=0.165). Conclusions and Relevance: Atopy, particularly atopic dermatitis, was significantly associated with improved survival and decreased incidence of BrM. The improved survival associated with these conditions in the context of immunotherapy suggests that these conditions in the elderly may identify those with more robust immune function that may be more responsive to treatment.
RESUMO
PURPOSE: To develop a novel deep ensemble learning model for accurate prediction of brain metastasis (BM) local control outcomes after stereotactic radiosurgery (SRS). METHODS AND MATERIALS: A total of 114 brain metastases (BMs) from 82 patients were evaluated, including 26 BMs that developed biopsy-confirmed local failure post-SRS. The SRS spatial dose distribution (Dmap) of each BM was registered to the planning contrast-enhanced T1 (T1-CE) magnetic resonance imaging (MRI). Axial slices of the Dmap, T1-CE, and planning target volume (PTV) segmentation (PTVseg) intersecting the BM center were extracted within a fixed field of view determined by the 60% isodose volume in Dmap. A spherical projection was implemented to transform planar image content onto a spherical surface using multiple projection centers, and the resultant T1-CE/Dmap/PTVseg projections were stacked as a 3-channel variable. Four Visual Geometry Group (VGG-19) deep encoders were used in an ensemble design, with each submodel using a different spherical projection formula as input for BM outcome prediction. In each submodel, clinical features after positional encoding were fused with VGG-19 deep features to generate logit results. The ensemble's outcome was synthesized from the 4 submodel results via logistic regression. In total, 10 model versions with random validation sample assignments were trained to study model robustness. Performance was compared with (1) a single VGG-19 encoder, (2) an ensemble with a T1-CE MRI as the sole image input after projections, and (3) an ensemble with the same image input design without clinical feature inclusion. RESULTS: The ensemble model achieved an excellent area under the receiver operating characteristic curve (AUCROC: 0.89 ± 0.02) with high sensitivity (0.82 ± 0.05), specificity (0.84 ± 0.11), and accuracy (0.84 ± 0.08) results. This outperformed the MRI-only VGG-19 encoder (sensitivity: 0.35 ± 0.01, AUCROC: 0.64 ± 0.08), the MRI-only deep ensemble (sensitivity: 0.60 ± 0.09, AUCROC: 0.68 ± 0.06), and the 3-channel ensemble without clinical feature fusion (sensitivity: 0.78 ± 0.08, AUCROC: 0.84 ± 0.03). CONCLUSIONS: Facilitated by the spherical image projection method, a deep ensemble model incorporating Dmap and clinical variables demonstrated excellent performance in predicting BM post-SRS local failure. Our novel approach could improve other radiation therapy outcome models and warrants further evaluation.
Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Radiocirurgia , Dosagem Radioterapêutica , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Humanos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Resultado do Tratamento , Masculino , Feminino , Pessoa de Meia-Idade , IdosoRESUMO
OBJECTIVE: Meningiomas are the most common primary brain tumors in adults and a subset are aggressive lesions resistant to standard therapies. Laser interstitial thermal therapy (LITT) has been successfully applied to other brain tumors, and recent work aims to explore the safety and long-term outcome experiences of LITT for both new and recurrent meningiomas. The authors' objective was to report safety and outcomes data of the largest cohort of LITT-treated meningioma patients to date. METHODS: Eight United States-based hospitals enrolled patients with meningioma in the Laser Ablation of Abnormal Neurological Tissue Using Robotic NeuroBlate System (LAANTERN) prospective multicenter registry and/or contributed additional retrospective enrollments for this cohort study. Demographic, procedural, safety, and outcomes data were collected and analyzed using standard statistical methods. RESULTS: Twenty adult patients (12 prospective and 8 retrospective) with LITT-targeted meningiomas were accrued. Patients underwent LITT for new (6 patients) and recurrent (14 patients) tumors (ranging from the 1st to 12th recurrence). The 30-day complication rate was 10%. Twenty percent of patients (4/20) had exhausted all other treatment options. Median length of follow-up was 1.3 years. One-third of new (2/6) and one-half of recurrent (7/14) meningiomas had disease progression during follow-up. One-year estimated local control (LC), progression-free survival, and overall survival rates were 55.3%, 48.4%, and 86.3%, respectively. In the 12 patients who had ≥ 91% ablative coverage, 1-year estimated LC was 61.4%. The complication rate was 10% (2/20), with 1 complication being transient and resolving postoperatively. CONCLUSIONS: This cohort study supports the safety of the procedure for this tumor type. LITT can offer a much-needed treatment option, especially for patients with multiply recurrent meningiomas who have limited remaining alternatives.
Assuntos
Terapia a Laser , Neoplasias Meníngeas , Meningioma , Recidiva Local de Neoplasia , Humanos , Meningioma/cirurgia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Terapia a Laser/métodos , Neoplasias Meníngeas/cirurgia , Estudos Prospectivos , Adulto , Resultado do Tratamento , Idoso de 80 Anos ou maisRESUMO
PURPOSE: During stereotactic radiosurgery (SRS) planning for brain metastases (BM), brain MRIs are reviewed to select appropriate targets based on radiographic characteristics. Some BM are difficult to detect and/or definitively identify and may go untreated initially, only to become apparent on future imaging. We hypothesized that in patients receiving multiple courses of SRS, reviewing the initial planning MRI would reveal early evidence of lesions that developed into metastases requiring SRS. METHODS: Patients undergoing two or more courses of SRS to BM within 6 months between 2016 and 2018 were included in this single-institution, retrospective study. Brain MRIs from the initial course were reviewed for lesions at the same location as subsequently treated metastases; if present, this lesion was classified as a "retrospectively identified metastasis" or RIM. RIMs were subcategorized as meeting or not meeting diagnostic imaging criteria for BM (+ DC or -DC, respectively). RESULTS: Among 683 patients undergoing 923 SRS courses, 98 patients met inclusion criteria. There were 115 repeat courses of SRS, with 345 treated metastases in the subsequent course, 128 of which were associated with RIMs found in a prior MRI. 58% of RIMs were + DC. 17 (15%) of subsequent courses consisted solely of metastases associated with + DC RIMs. CONCLUSION: Radiographic evidence of brain metastases requiring future treatment was occasionally present on brain MRIs from prior SRS treatments. Most RIMs were + DC, and some subsequent SRS courses treated only + DC RIMs. These findings suggest enhanced BM detection might enable earlier treatment and reduce the need for additional SRS.
Assuntos
Neoplasias Encefálicas , Radiocirurgia , Humanos , Radiocirurgia/métodos , Estudos Retrospectivos , Incidência , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Imageamento por Ressonância MagnéticaRESUMO
BACKGROUND: Laser interstitial thermal therapy (LITT) of intracranial tumors or radiation necrosis enables tissue diagnosis, cytoreduction, and rapid return to systemic therapies. Ablated tissue remains in situ, resulting in characteristic post-LITT edema associated with transient clinical worsening and complicating post-LITT response assessment. METHODS: All patients receiving LITT at a single center for tumors or radiation necrosis from 2015 to 2023 with ≥9 months of MRI follow-up were included. An nnU-Net segmentation model was trained to automatically segment contrast-enhancing lesion volume (CeLV) of LITT-treated lesions on T1-weighted images. Response assessment was performed using volumetric measurements. RESULTS: Three hundred and eighty four unique MRI exams of 61 LITT-treated lesions and 6 control cases of medically managed radiation necrosis were analyzed. Automated segmentation was accurate in 367/384 (95.6%) images. CeLV increased to a median of 68.3% (IQR 35.1-109.2%) from baseline at 1-3 months from LITT (Pâ =â 0.0012) and returned to baseline thereafter. Overall survival (OS) for LITT-treated patients was 39.1 (9.2-93.4) months. Lesion expansion above 40% from volumetric nadir or baseline was considered volumetric progression. Twenty-one of 56 (37.5%) patients experienced progression for a volumetric progression-free survival of 21.4 (6.0-93.4) months. Patients with volumetric progression had worse OS (17.3 vs 62.1 months, Pâ =â 0.0015). CONCLUSIONS: Post-LITT CeLV expansion is quantifiable and resolves within 6 months of LITT. Development of response assessment criteria for LITT-treated lesions is feasible and should be considered for clinical trials. Automated lesion segmentation could speed the adoption of volumetric response criteria in clinical practice.
Assuntos
Neoplasias Encefálicas , Terapia a Laser , Humanos , Feminino , Masculino , Terapia a Laser/métodos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Adulto , Redes Neurais de Computação , Idoso , Seguimentos , Estudos Retrospectivos , Prognóstico , Hipertermia Induzida/métodos , Aprendizado ProfundoRESUMO
OBJECTIVE: Preoperative assessment is important for neurosurgical risk stratification, but the level of evidence for individual screening tests is low. In preoperative urinalysis (UA), testing may significantly increase costs and lead to inappropriate antibiotic treatment. We prospectively evaluated whether eliminating preoperative UA was noninferior to routine preoperative UA as measured by 30-day readmission for surgical site infection in adult elective neurosurgical procedures. METHODS: A single-institution prospective, pragmatic study of patients receiving elective neurosurgical procedures from 2018 to 2020 was conducted. Patients were allocated based on same-day versus preoperative admission status. Rates of preoperative UA and subsequent wound infection were measured along with detailed demographic, surgical, and laboratory data. RESULTS: The study included 879 patients. The most common types of surgery were cranial (54.7%), spine (17.4%), and stereotactic/functional (19.5%). No preoperative UA was performed in 315 patients, while 564 underwent UA. Of tested patients, 103 (18.3%) met criteria for suspected urinary tract infection, and 69 (12.2%) received subsequent antibiotic treatment. There were 14 patients readmitted within 30 days (7 without UA [2.2%] vs. 7 with UA [1.2%]) for subsequent wound infection with a risk difference of 0.98% (95% confidence interval -0.89% to 2.85%). The upper limit of the confidence interval exceeded the preselected noninferiority margin of 1%. CONCLUSIONS: In this prospective study of preoperative UA for elective neurosurgical procedures using a pragmatic, real-world design, risk of readmission due to surgical site infection was very low across the study cohort, suggesting a limited role of preoperative UA for elective neurosurgical procedures.
Assuntos
Infecção da Ferida Cirúrgica , Infecções Urinárias , Adulto , Humanos , Infecção da Ferida Cirúrgica/diagnóstico , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/prevenção & controle , Estudos Prospectivos , Urinálise , Antibacterianos/uso terapêutico , Coluna Vertebral , Infecções Urinárias/diagnóstico , Infecções Urinárias/etiologia , Infecções Urinárias/prevenção & controleRESUMO
The accepted paradigm for both cellular and anti-tumor immunity relies upon tumor cell killing by CD8+ T cells recognizing cognate antigens presented in the context of target cell major histocompatibility complex (MHC) class I (MHC-I) molecules. Likewise, a classically described mechanism of tumor immune escape is tumor MHC-I downregulation. Here, we report that CD8+ T cells maintain the capacity to kill tumor cells that are entirely devoid of MHC-I expression. This capacity proves to be dependent instead on interactions between T cell natural killer group 2D (NKG2D) and tumor NKG2D ligands (NKG2DLs), the latter of which are highly expressed on MHC-loss variants. Necessarily, tumor cell killing in these instances is antigen independent, although prior T cell antigen-specific activation is required and can be furnished by myeloid cells or even neighboring MHC-replete tumor cells. In this manner, adaptive priming can beget innate killing. These mechanisms are active in vivo in mice as well as in vitro in human tumor systems and are obviated by NKG2D knockout or blockade. These studies challenge the long-advanced notion that downregulation of MHC-I is a viable means of tumor immune escape and instead identify the NKG2D-NKG2DL axis as a therapeutic target for enhancing T cell-dependent anti-tumor immunity against MHC-loss variants.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Humanos , Camundongos , Antígenos/metabolismo , Linfócitos T CD8-Positivos/patologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismoRESUMO
PURPOSE: Laser interstitial thermal therapy (LITT) is an effective minimally invasive treatment option for intracranial tumors. Our group produced plasmonics-active gold nanostars (GNS) designed to preferentially accumulate within intracranial tumors and amplify the ablative capacity of LITT. EXPERIMENTAL DESIGN: The impact of GNS on LITT coverage capacity was tested in ex vivo models using clinical LITT equipment and agarose gel-based phantoms of control and GNS-infused central "tumors." In vivo accumulation of GNS and amplification of ablation were tested in murine intracranial and extracranial tumor models followed by intravenous GNS injection, PET/CT, two-photon photoluminescence, inductively coupled plasma mass spectrometry (ICP-MS), histopathology, and laser ablation. RESULTS: Monte Carlo simulations demonstrated the potential of GNS to accelerate and specify thermal distributions. In ex vivo cuboid tumor phantoms, the GNS-infused phantom heated 5.5× faster than the control. In a split-cylinder tumor phantom, the GNS-infused border heated 2× faster and the surrounding area was exposed to 30% lower temperatures, with margin conformation observed in a model of irregular GNS distribution. In vivo, GNS preferentially accumulated within intracranial tumors on PET/CT, two-photon photoluminescence, and ICP-MS at 24 and 72 hours and significantly expedited and increased the maximal temperature achieved in laser ablation compared with control. CONCLUSIONS: Our results provide evidence for use of GNS to improve the efficiency and potentially safety of LITT. The in vivo data support selective accumulation within intracranial tumors and amplification of laser ablation, and the GNS-infused phantom experiments demonstrate increased rates of heating, heat contouring to tumor borders, and decreased heating of surrounding regions representing normal structures.
Assuntos
Neoplasias Encefálicas , Hipertermia Induzida , Humanos , Animais , Camundongos , Ouro , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Encefálicas/cirurgia , Hipertermia Induzida/métodos , LasersRESUMO
Background: Meningiomas are the most common primary central nervous system neoplasm in the United States. While the majority of meningiomas are benign, the World Health Organization (WHO) Grade I tumors, a not-insignificant proportion of tumors are in anatomically complex locations or demonstrate more aggressive phenotypes, presenting a challenge for local disease control with surgery and radiation. Laser interstitial thermal therapy (LITT) consists of stereotactic delivery of laser light for tumor ablation and is minimally invasive, requiring implantation of a laser fiber through a cranial burr hole. Herein, we demonstrate the first use of this technology in a progressive atypical sphenoid wing meningioma for a previously resected and irradiated tumor. Case Description: A 47-year-old female was diagnosed with a left-sided atypical meningioma, the WHO 2, of the sphenoid wing following acute worsening of bitemporal headache and dizziness. Given neurovascular involvement, a subtotal resection was performed, followed by stereotactic radiosurgery. Following progression 9 months from resection, the patient elected to proceed with LITT. The patient's postoperative course was uncomplicated and she remains progression free at 24 months following LITT. Conclusion: We present the first use of LITT for a sphenoid wing meningioma documented in the literature, which demonstrated enhanced disease control for a lesion that was refractory to both surgery and radiation. LITT could represent an additional option for local control of progressive meningiomas, even in locations that are challenging to access surgically. More evidence is needed regarding the technical nuances of LITT for lesions of the skull base.
RESUMO
Background: The nervous and immune systems interact in a reciprocal manner, both under physiologic and pathologic conditions. Literature spanning various CNS pathologies including brain tumors, stroke, traumatic brain injury and de-myelinating diseases describes a number of associated systemic immunologic changes, particularly in the T-cell compartment. These immunologic changes include severe T-cell lymphopenia, lymphoid organ contraction, and T-cell sequestration within the bone marrow. Methods: We performed an in-depth systematic review of the literature and discussed pathologies that involve brain insults and systemic immune derangements. Conclusions: In this review, we propose that the same immunologic changes hereafter termed 'systemic immune derangements', are present across CNS pathologies and may represent a novel, systemic mechanism of immune privilege for the CNS. We further demonstrate that systemic immune derangements are transient when associated with isolated insults such as stroke and TBI but persist in the setting of chronic CNS insults such as brain tumors. Systemic immune derangements have vast implications for informed treatment modalities and outcomes of various neurologic pathologies.
RESUMO
[This corrects the article DOI: 10.1016/j.adro.2022.101054.].
RESUMO
Background: Laser interstitial thermal therapy (LITT) in the setting of post-SRS radiation necrosis (RN) for patients with brain metastases has growing evidence for efficacy. However, questions remain regarding hospitalization, local control, symptom control, and concurrent use of therapies. Methods: Demographics, intraprocedural data, safety, Karnofsky performance status (KPS), and survival data were prospectively collected and then analyzed on patients who consented between 2016-2020 and who were undergoing LITT for biopsy-proven RN at one of 14 US centers. Data were monitored for accuracy. Statistical analysis included individual variable summaries, multivariable Fine and Gray analysis, and Kaplan-Meier estimated survival. Results: Ninety patients met the inclusion criteria. Four patients underwent 2 ablations on the same day. Median hospitalization time was 32.5 hours. The median time to corticosteroid cessation after LITT was 13.0 days (0.0, 1229.0) and cumulative incidence of lesional progression was 19% at 1 year. Median post-procedure overall survival was 2.55 years [1.66, infinity] and 77.1% at one year as estimated by KaplanMeier. Median KPS remained at 80 through 2-year follow-up. Seizure prevalence was 12% within 1-month post-LITT and 7.9% at 3 months; down from 34.4% within 60-day prior to procedure. Conclusions: LITT for RN was not only again found to be safe with low patient morbidity but was also a highly effective treatment for RN for both local control and symptom management (including seizures). In addition to averting expected neurological death, LITT facilitates ongoing systemic therapy (in particular immunotherapy) by enabling the rapid cessation of steroids, thereby facilitating maximal possible survival for these patients.
RESUMO
Purpose: Hypofractionated stereotactic radiosurgery (HF-SRS) with or without surgical resection is potentially a preferred treatment for larger or symptomatic brain metastases (BMs). Herein, we report clinical outcomes and predictive factors following HF-SRS. Methods and Materials: Patients undergoing HF-SRS for intact (iHF-SRS) or resected (rHF-SRS) BMs from 2008 to 2018 were retrospectively identified. Linear accelerator-based image-guided HF-SRS consisted of 5 fractions at 5, 5.5, or 6 Gy per fraction. Time to local progression (LP), time to distant brain progression (DBP), and overall survival (OS) were calculated. Cox models assessed effect of clinical factors on OS. Fine and Gray's cumulative incidence model for competing events examined effect of factors on LP and DBP. The occurrence of leptomeningeal disease (LMD) was determined. Logistic regression examined predictors of LMD. Results: Among 445 patients, median age was 63.5 years; 87% had Karnofsky performance status ≥70. Fifty-three % of patients underwent surgical resection, and 75% received 5 Gy per fraction. Patients with resected BMs had higher Karnofsky performance status (90-100, 41 vs 30%), less extracranial disease (absent, 25 vs 13%), and fewer BMs (multiple, 32 vs 67%). Median diameter of the dominant BM was 3.0 cm (interquartile range, 1.8-3.6 cm) for intact BMs and 4.6 cm (interquartile range, 3.9-5.5 cm) for resected BMs. Median OS was 5.1 months (95% confidence interval [CI], 4.3-6.0) following iHF-SRS and 12.8 months (95% CI, 10.8-16.2) following rHF-SRS (P < .01). Cumulative LP incidence was 14.5% at 18 months (95% CI, 11.4-18.0%), significantly associated with greater total GTV (hazard ratio, 1.12; 95% CI, 1.05-1.20) following iFR-SRS, and with recurrent versus newly diagnosed BMs across all patients (hazard ratio, 2.28; 95% CI, 1.01-5.15). Cumulative DBP incidence was significantly greater following rHF-SRS than iHF-SRS (P = .01), with respective 24-month rates of 50.0 (95% CI, 43.3-56.3) and 35.7% (95% CI, 29.2-42.2). LMD (57 events total; 33% nodular, 67% diffuse) was observed in 17.1% of rHF-SRS and 8.1% of iHF-SRS cases (odds ratio, 2.46; 95% CI, 1.34-4.53). Any radionecrosis and grade 2+ radionecrosis events were observed in 14 and 8% of cases, respectively. Conclusions: HF-SRS demonstrated favorable rates of LC and radionecrosis in postoperative and intact settings. Corresponding LMD and RN rates were comparable to those of other studies.
RESUMO
BACKGROUND: The management of intracranial oncological disease remains a significant challenge despite advances in systemic cancer therapy. Laser interstitial thermal therapy (LITT) represents a novel treatment for local control of brain tumors through photocoagulation with a stereotactically implanted laser fiber. Because the use of laser interstitial thermal therapy continues to increase within neurosurgery, characterization of LITT is necessary to improve outcomes. OBJECTIVE: To quantify the risk of tumor seeding along the laser fiber tract in patients receiving LITT for primary or metastatic brain tumors at a high-volume treatment center. METHODS: We retrospectively reviewed all patients receiving LITT from 2015 to 2021 at our medical center. Patients with biopsy-confirmed tumors were included in this study. Tract seeding was identified as discontinuous, newly enhancing tumor along the LITT tract. RESULTS: Fifty-six patients received LITT for biopsy-confirmed tumors from 2015 to 2021, with tract seeding identified in 3 (5.4%). Twenty-nine (51.8%) patients had gliomas, while the remainder had metastases, of which lung was the most common histology (20 patients, 74%). Tract seeding was associated with ablation proceeding inward from superficial tumor margin closest to the cranial entry point ( P = .03). Patients with tract seeding had a shorter median time to progression of 1.1 (0.1-1.3) months vs 4.2 (2.2-8.6) months ( P = .03). CONCLUSION: Although the risk of tract seeding after LITT is reassuringly low, it is associated with decreased progression-free survival. This risk may be related to surgical technique or experience. Follow-up radiosurgery to the LITT tract has the potential to prevent this complication.
Assuntos
Neoplasias Encefálicas , Terapia a Laser , Humanos , Estudos Retrospectivos , Neoplasias Encefálicas/patologia , Intervalo Livre de Progressão , Terapia a Laser/métodos , LasersRESUMO
Background: Few studies have assessed the impact of race on short-term patient outcomes in the brain metastasis population. The goal of this study is to evaluate the association of race with inpatient clinical presentation, treatment, in-hospital complications, and in-hospital mortality rates for patients with brain metastases (BM). Method: Using data collected from the National Inpatient Sample between 2004 and 2014, we retrospectively identified adult patients with a primary diagnosis of BM. Outcomes included nonroutine discharge, prolonged length of stay (pLOS), in-hospital complications, and mortality. Results: Minority (Black, Hispanic/other) patients were less likely to receive surgical intervention compared to White patients (odds ratio [OR] 0.70; 95% confidence interval [CI] 0.66-0.74, pâ <â 0.001; OR 0.88; 95% CI 0.84-0.93, pâ <â 0.001). Black patients were more likely to develop an in-hospital complication than White patients (OR 1.35, 95% CI 1.28-1.41, pâ <â 0.001). Additionally, minority patients were more likely to experience pLOS than White patients (OR 1.48; 95% CI 1.41-1.57, pâ <â 0.001; OR 1.34; 95% CI 1.27-1.42, pâ <â 0.001). Black patients were more likely to experience a nonroutine discharge (OR 1.25; 95% CI 1.19-1.31, pâ <â 0.001) and higher in-hospital mortality than White (OR 1.13; 95% CI 1.03-1.23, pâ =â 0.008). Conclusion: Our analysis demonstrated that race is associated with disparate short-term outcomes in patients with BM. More efforts are needed to address these disparities, provide equitable care, and allow for similar outcomes regardless of care.