Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(6): 1517-1532, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38747592

RESUMO

Proteasomes degrade intracellular proteins to generate antigenic peptides that are recognized by the adaptive immune system and promote anticancer immunity. However, tumors subvert the antigen presentation machinery to escape immunosurveillance. We hypothesized that proteasome activation could concomitantly increase antigen abundance and diversity in multiple myeloma cells. High-throughput screens revealed that histone deacetylase 6 (HDAC6) inhibitors activated proteasomes to unmask neoantigens and amplify the tumor-specific antigenic landscape. Treatment of patient CD138+ cells with HDAC6 inhibitors significantly promoted the antimyeloma activity of autologous CD8+ T cells. Pharmacologic blockade and genetic ablation of the HDAC6 ubiquitin-binding domain released HR23B, which shuttles ubiquitinylated cargo to proteasomes, while silencing HDAC6 or HR23B in multiple myeloma cells abolished the effect of HDAC6 inhibitors on proteasomes, antigen presentation, and T-cell cytotoxicity. Taken together, our results demonstrate the paradigm-shifting translational impact of proteasome activators to expand the myeloma immunopeptidome and have revealed novel, actionable antigenic targets for T cell-directed immunotherapy. SIGNIFICANCE: The elimination of therapy-resistant tumor cells remains a major challenge in the treatment of multiple myeloma. Our study identifies and functionally validates agents that amplify MHC class I-presented antigens and pave the way for the development of proteasome activators as immune adjuvants to enhance immunotherapeutic responses in patients with multiple myeloma.


Assuntos
Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Mieloma Múltiplo , Complexo de Endopeptidases do Proteassoma , Humanos , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Inibidores de Histona Desacetilases/farmacologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Apresentação de Antígeno/efeitos dos fármacos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo
2.
Cancer Immunol Immunother ; 71(7): 1671-1680, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34816323

RESUMO

Natural killer (NK) cells are cytotoxic lymphocytes that play a major role in the innate immune system. NK cells exhibit potent cytotoxic activity against cancer cells and virally infected cells without antigen priming. These unique cytotoxic properties make NK cells a promising therapeutic against cancer. Limitations of NK cell therapy include deficiencies in high clinical efficacy often due to a need for a high NK cell to target cell ratio to achieve effective killing. In order to address the suboptimal efficacy of current adoptive NK cell therapy, a high throughput screen (HTS) was designed and performed to identify drug-like compounds that increase NK cytotoxic activity against tumor cells without affecting the normal cells. This screen was performed in a 384-well plate format utilizing an expanded primary NK cell product and ovarian cancer cells as a target cell (TC) line. Of the 8000 diverse small molecules screened, 16 hits were identified (0.2% hit rate) based on both a robust Z (RZ) score < -3 and a greater than 10% increase in NK cell killing. A validation screen had a confirmation rate of 70%. Select compounds were further validated and characterized by additional cytotoxicity assays including activity against multiple blood cancer and solid tumor cell lines, with no effect on primary human T cells. This work demonstrates that high-throughput screening can be reliably used to identify compounds that increase NK tumoricidal activity in vitro that can be further investigated and translated for potential clinical application. Précis: Our work led to the identification of promising compound that potently increases NK cell-mediated killing of a variety of different cancer cells, but no impact on the killing of normal cells. This compound demonstrates the utility of this assay.


Assuntos
Detecção Precoce de Câncer , Neoplasias , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Humanos , Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA