Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Genet ; 63(11): 104020, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32827718

RESUMO

Accumulation of lipid peroxides causes membrane damage and cell death. Glutathione peroxidase 4 (GPX4) acts as a hydroperoxidase which prevents accumulation of toxic oxidized lipids and blocks ferroptosis, an iron-dependent, non-apoptotic mode of cell death. GPX4 deficiency causes Sedaghatian-type spondylo-metaphyseal dysplasia (SSMD), a lethal autosomal recessive disorder, featuring skeletal dysplasia, cardiac arrhythmia and brain anomalies with only three pathogenic GPX4 variants reported in two SSMD patients. Our objective was to identify the underlying genetic cause of neonatal death of two siblings presenting with hypotonia, cardiorespiratory failure and SSMD. Whole exome sequencing (WES) was performed in DNA samples from two siblings and their parents. Since "critical samples" were not available from the patients, DNA was extracted from dry blood spots (DBS) retrieved from the Israeli newborn-screening center. Sanger sequencing and segregation analysis followed the WES. Homozygous novel GPX4 variant, c.153_160del; p.His52fs*1 causing premature truncation of GPX4 was detected in both siblings; their parents were heterozygotes. Segregation analysis confirmed autosomal recessive inheritance. This report underscores the importance of DBS WES in identifying the genes and mutations causing devastating rare diseases. Obtaining critical samples from a dying patient is crucial for enabling genetic diagnosis.


Assuntos
Mutação com Perda de Função , Osteocondrodisplasias/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Teste em Amostras de Sangue Seco , Feminino , Testes Genéticos , Homozigoto , Humanos , Recém-Nascido , Masculino , Osteocondrodisplasias/patologia , Linhagem , Sequenciamento do Exoma
2.
J Lipid Res ; 59(11): 2214-2222, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30135217

RESUMO

Cerebrotendinous xanthomatosis (CTX) is a progressive metabolic leukodystrophy. Early identification and treatment from birth onward effectively provides a functional cure, but diagnosis is often delayed. We conducted a pilot study using a two-tier test for CTX to screen archived newborn dried bloodspots (DBSs) or samples collected prospectively from a high-risk Israeli newborn population. All DBS samples were analyzed with flow injection analysis (FIA)-MS/MS, and 5% of samples were analyzed with LC-MS/MS. Consecutively collected samples were analyzed to identify CTX-causing founder genetic variants common among Druze and Moroccan Jewish populations. First-tier analysis with FIA-MS/MS provided 100% sensitivity to detect CTX-positive newborn DBSs, with a low false-positive rate (0.1-0.5%). LC-MS/MS, as a second-tier test, provided 100% sensitivity to detect CTX-positive newborn DBSs with a false-positive rate of 0% (100% specificity). In addition, 5ß-cholestane-3α,7α,12α,25-tetrol-3-O-ß-D-glucuronide was identified as the predominant bile-alcohol disease marker present in CTX-positive newborn DBSs. In newborns identifying as Druze, a 1:30 carriership frequency was determined for the c.355delC CYP27A1 gene variant, providing an estimated disease prevalence of 1:3,600 in this population. These data support the feasibility of two-tier DBS screening for CTX in newborns and set the stage for large-scale prospective pilot studies.


Assuntos
Triagem Neonatal/métodos , Xantomatose Cerebrotendinosa/diagnóstico , Cromatografia Líquida , Humanos , Recém-Nascido , Estudos Prospectivos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA