Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 449: 139193, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604037

RESUMO

The desirable wine aroma compounds 3-sulfanylhexan-1-ol (3SH) and 3-sulfanylhexyl acetate (3SHA) are released during fermentation from non-volatile precursors present in the grapes. This work explores the relative contribution of four precursors (E-2-hexenal, 3-S-glutathionylhexan-1-ol, 3-S-glutathionylhexanal, and 3-S-cysteinylhexan-1-ol) to 3SH and 3SHA. Through the use of isotopically labelled analogues of these precursors in defined fermentation media, new insights into the role of each precursor have been identified. E-2-Hexenal was shown to contribute negligible amounts of thiols, while 3-S-glutathionylhexan-1-ol was the main precursor of both 3SH and 3SHA. The glutathionylated precursors were both converted to 3SHA more efficiently than 3-S-cysteinylhexan-1-ol. Interestingly, 3-S-glutathionylhexanal generated 3SHA without detectable concentrations of 3SH, suggesting possible differences in the way this precursor is metabolised compared to 3-S-glutathionylhexan-1-ol and 3-S-cysteinylhexan-1-ol. We also provide the first evidence for chemical conversion of 3-S-glutathionylhexan-1-ol to 3-S-(γ-glutamylcysteinyl)-hexan-1-ol in an oenological system.


Assuntos
Fermentação , Vitis , Vinho , Vinho/análise , Vitis/química , Vitis/metabolismo , Acetatos/metabolismo , Acetatos/química , Aldeídos/metabolismo , Aldeídos/química , Odorantes/análise , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química
2.
J Chromatogr A ; 1690: 463805, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36681004

RESUMO

The study of polysulfides has been a recent topic of interest for wine research due to the possibility of these compounds to release hydrogen sulfide (H2S) during storage. However, studying these compounds has been challenging for several reasons. Polysulfides are low in concentration in natural samples, they are chemically unstable and pure standards of the single compounds (RSnR with n > 2) are not commercially available. In the present study, a method was developed in order to collect a single polysulfide and study its degradation and the consequent formation of H2S. For this approach, ultra-high pressure liquid chromatography was used with an integrated fraction collector and subsequently coupled to high resolution mass spectrometry. After fractionation, the degradation of the di-cysteinyl pentasulfide (CS5C) was induced by exposure to 30 °C and the H2S formation was measured in parallel using ion-exchange chromatography. This method showed the evolutions of different polysulfides and the H2S release originating from the target compound, an observation that to the best of our knowledge has never been made before. The method in the present study demonstrated promising applications for polysulfide studies and brought us a step closer to the understanding of the chemistry of polysulfides in wine.


Assuntos
Sulfeto de Hidrogênio , Vinho , Sulfeto de Hidrogênio/análise , Cromatografia Líquida de Alta Pressão , Vinho/análise , Sulfetos/química , Espectrometria de Massas
3.
Food Microbiol ; 109: 104124, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309435

RESUMO

Polysulfide degradation in wine can result in hydrogen sulfide (H2S) release, imparting a rotten-egg smell that is detrimental to wine quality. Although the presence of wine polysulfides has been demonstrated, their biogenesis remains unclear. This study investigated the role of Saccharomyces cerevisiae in polysulfide formation during fermentation, with and without 5 mM cysteine supplementation as an H2S source. Using an established liquid chromatography-tandem mass spectrometry method, monobromobimane derivatives of hydropolysulfides, including CysSSSH, CysSSSSH and GSSSSH, and two oxidized polysulfides, GSSG and GSSSSG, were detected in yeast cells at the end of fermentation in a grape juice-like medium. Polysulfide production by four S. cerevisiae single deletion mutants (BY4743 Δcys3, Δcys4, Δmet17 and Δtum1) showed no significant differences compared to BY4743, suggesting that uncharacterized pathways maintain cellular polysulfide homeostasis. Five mM cysteine addition increased the formation of shorter sulfur chain species, including GSS-bimane and GSSG, but did not elevate levels of longer sulfur chain species. Additionally, polysulfides with even numbers of sulfur atoms tended to predominate in cellular lysates. Oxidized polysulfides and longer chain hydropolysulfides were not detected in finished wines. This evidence suggests that these polysulfides are unstable in wine-like environments or not transported extracellularly. Collectively, our data illustrate the complexity of yeast polysulfide metabolism under fermentation conditions.


Assuntos
Vitis , Vinho , Vinho/análise , Saccharomyces cerevisiae/metabolismo , Vitis/metabolismo , Cisteína/análise , Dissulfeto de Glutationa/análise , Dissulfeto de Glutationa/metabolismo , Fermentação , Enxofre/metabolismo , Suplementos Nutricionais
4.
Foods ; 11(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35885242

RESUMO

A process for using grape (Pinot noir) pomace to produce products with improved health-promoting effects was investigated. This process integrated a solid-liquid extraction (SLE) method and a method to acylate the polyphenolics in the extract. This report describes and discusses the methods used, including the rationale and considerations behind them, and the results obtained. The study begins with the work to optimize the SLE method for extracting higher quantities of (+)-catechin, (-)-epicatechin and quercetin by trialing 28 different solvent systems on small-scale samples of Pinot noir pomace. One of these systems was then selected and used for the extraction of the same flavonoids on a large-scale mass of pomace. It was found that significantly fewer quantities of flavonoids were observed. The resultant extract was then subject to a method of derivatization using three different fatty acylating agents. The antiproliferative activities of these products were measured; however, the resulting products did not display activity against the chosen cancer cells. Limitations and improvements to the methods in this process are also discussed.

5.
Food Chem ; 371: 131341, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808767

RESUMO

Over the last five years, polysulfides in wine have become a topic of interest. The finding that both yeast and the wine composition could contribute to the formation and evolution of these compounds has prompted several studies, further corroborated by the discovery of a link between polysulfides and H2S release during ageing. In the present study, the accumulation of cysteinylated and glutathionylated polysulfides was followed during fermentation for the first time. Synthetic grape media and Chardonnay juice treated with CuSO4, elemental sulfur or both were fermented, and subsequently analysed using an in-house UHPLC-HRMS method. Differences in polysulfide accumulation were observed between the two media, highlighting the role of the matrix composition. Elemental sulfur, especially when combined with CuSO4, resulted in significantly increased accumulations of polysulfides compared to controls in both media. Polysulfides with longer S-chains generally appeared later in the fermentation, an observation that prompted further questions on these metabolites' formation.


Assuntos
Vitis , Vinho , Fermentação , Saccharomyces cerevisiae , Sulfetos , Vinho/análise
6.
J Chromatogr A ; 1658: 462603, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34670176

RESUMO

This research details the development of a novel LC-MS/MS method involving a QuEChERS-based extraction that, for the first time, achieves the fast and concurrent analysis of both free varietal thiols (3-sulfanylhexan-1-ol, 3-sulfanylhexyl acetate, and 4-methyl-4-sulfanylpentan-2-one) and their S-glutathionylated/S-cysteinylated precursors in wine samples. Limits of detections for the free thiols were comparable to or lower than those obtained with previously reported more laborious methods. Repeatability for the free thiols ranged between 3-19% and from 0.1-7.7% for the thiol precursors. The method was subsequently applied to the analysis of a selection of 22 wines from a range of different grape varieties. The rapidity of this method combined with its sensitivity makes it suitable for both research and industry applications.


Assuntos
Vitis , Vinho , Cromatografia Líquida , Compostos de Sulfidrila/análise , Espectrometria de Massas em Tandem , Vinho/análise
7.
Sci Rep ; 11(1): 12595, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131251

RESUMO

Luteolin is a flavonoid found in a wide range of plant materials, including commonly eaten fruits and vegetables. It displays a wide range of biological activities but is known to have poor bioavailability. In this study, ten different mono-acyl (nine 5-O-acyl and one 7-O-acyl) derivatives of luteolin were synthesised for the purpose of improving bioactivity and bioavailability, and therefore enhance their therapeutic potential. The antiproliferative activity of these derivatives was assessed against the HCT116 colon cancer and MDA-MB-231 breast cancer cell lines using a 3[H] thymidine incorporation assay. The radical scavenging activity of these derivatives against 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical using Trolox as a standard, was also assessed. Some of these derivatives were found to have improved antiproliferative activity with comparable radical scavenging activity compared to luteolin. Increased lipophilicity has been shown to increase the bioavailability of flavonoids implying these analogues will also have increased bioavailability.


Assuntos
Antioxidantes/farmacologia , Disponibilidade Biológica , Sequestradores de Radicais Livres/farmacologia , Luteolina/farmacologia , Antioxidantes/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Feminino , Sequestradores de Radicais Livres/química , Células HCT116 , Humanos , Luteolina/síntese química
8.
Molecules ; 26(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799363

RESUMO

Quercetin is a flavonoid that is found in many plant materials, including commonly eaten fruits and vegetables. The compound is well known for its wide range of biological activities. In this study, 5-O-acyl derivatives of quercetin were synthesised and assessed for their antiproliferative activity against the HCT116 colon cancer and MDA-MB-231 breast cancer cell lines; and their radical scavenging activity against the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical species. Four derivatives were found to have improved the antiproliferative activity compared to quercetin whilst retaining radical scavenging activity.


Assuntos
Proliferação de Células/efeitos dos fármacos , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/farmacologia , Quercetina/síntese química , Quercetina/farmacologia , Benzotiazóis/química , Compostos de Bifenilo/química , Linhagem Celular Tumoral , Flavonoides/síntese química , Flavonoides/farmacologia , Células HCT116 , Humanos , Picratos/química , Ácidos Sulfônicos/química
9.
Talanta ; 218: 121105, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32797871

RESUMO

A novel ultra high pressure liquid chromatography combined with high resolution mass spectrometry (UHPLC-HRMS) method was developed to study glutathionyl and cysteinyl polysulfides in wine. Different HPLC columns were investigated in order to optimise the chromatographic resolution of the polysulfide standard mixtures synthesised in-house. The optimisation of the chromatographic conditions when trying to separate glutathionylated and cysteinylated species containing from 3 to 5 sulfur atoms proved particularly challenging, with the cationic exchange column IonPac CS12A-MS resulting to be the best column for this task.The synergistic application of the newly developed methods together with the synthesised reference standard mixtures allowed the identification and the detection of 11 different glutathionyl and cysteinyl polysulfides. Moreover, analysing 15 young white wines was possible to confirm the presence of GSSSG in wine (GS = glutathione). More importantly, this study allowed for the first identification of several symmetric and asymmetric new polysulfides, namely: GSSSSG, CSSSC (CS = cysteine), CSSSSC, CSSSG, and CSSSSG. These molecules have not previously been identified in wine, raising the question on their biogenesis and role on wine quality.

10.
Antioxidants (Basel) ; 8(7)2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330796

RESUMO

Valorization of agricultural waste has become increasingly important. Wastes generated by wineries are high in phenolic compounds with antioxidant and antibacterial properties, which contribute to phytotoxicity, making their immediate use for agricultural means limited. Utilizing a water-based extraction method, the phenolic compounds from winery waste were extracted and purified. The resulting extract was characterized for phenolic composition using high-pressure liquid chromatography-ultraviolet/visible and electrochemical detectors (HPLC-UV/Vis, ECD) for monomers, and spectral assessment of the tannins present using attenuated total reflectance- Fourier transform infrared (ATR-FTIR), FT-Raman, and solid-state nuclear magnetic resonance (SSNMR) spectroscopies. The extract's antioxidant activity was assessed by the scavenging of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and Folin-Ciocalteu total phenolic assay, and was found to be as effective as a commercially obtained grape extract. The extract's antimicrobial efficacy was tested for minimum bactericidal concentration using Candida albicans, Escherichia coli 25922, and Staphylococcus aureus 6538, which resulted in greater efficacy against gram-positive bacteria as shown over gram-negative bacteria, which can be linked to both monomeric and tannin polyphenols, which have multiple modes of bactericidal action.

11.
Chem Commun (Camb) ; 55(60): 8868-8871, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31240288

RESUMO

New evidence on the role of H2S as a gasotransmitter suggests that the true signalling effectors are polysulfides. Both oxidized polysulfides and hydropolysulfides were synthesized and their presence in S. cerevisiae was observed for the first time. A single gene-deletant approach allowed observation of the modulation of polysulfide species and levels.


Assuntos
Gasotransmissores/análise , Saccharomyces cerevisiae/química , Sulfetos/análise , Proteínas de Transporte/genética , Cistationina beta-Sintase/genética , Cistationina gama-Liase/genética , Gasotransmissores/síntese química , Gasotransmissores/metabolismo , Deleção de Genes , Metabolômica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sulfetos/síntese química , Sulfetos/metabolismo
12.
FEMS Yeast Res ; 19(2)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30277518

RESUMO

3-(methylthio)-1-propanol (methionol), produced by yeast as an end-product of L-methionine (L-Met) catabolism, imparts off-odours reminiscent of cauliflower and potato to wine. Saccharomyces cerevisiae ARO genes, including transaminases Aro8p and Aro9p, and decarboxylase Aro10p, catalyse two key steps forming methionol via the Ehrlich pathway. We compared methionol concentrations in wines fermented by single Δaro8, Δaro9 and Δaro10 deletants in lab strain BY4743 versus wine strain Zymaflore F15, and F15 double- and triple-aro deletants versus single-aro deletants, using headspace-solid phase microextraction coupled with gas chromatography-mass spectrometry.Deletion of two or more aro genes increased growth lag phase, with the greatest delay exhibited by F15 Δaro8 Δaro9. The single Δaro8 deletion decreased methionol by 44% in BY4743 and 92% in F15, while the Δaro9 deletion increased methionol by 46% in F15 but not BY4743. Single deletion of Δaro10 had no effect on methionol.Unexpectedly, F15 Δaro8 Δaro9 and F15 Δaro8 Δaro9 Δaro10 produced more methionol than F15 Δaro8. In the absence of Aro8p and Aro9p, other transaminases may compensate or an alternative pathway may convert methanethiol to methionol. Our results confirm that Ehrlich pathway genes differ greatly between lab and wine yeast strains, impacting downstream products such as methionol.


Assuntos
Metionina/metabolismo , Propanóis/metabolismo , Piruvato Descarboxilase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Sulfetos/metabolismo , Transaminases/metabolismo , Vinho/microbiologia , Vias Biossintéticas/genética , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Deleção de Genes , Piruvato Descarboxilase/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transaminases/genética
13.
Food Chem ; 271: 747-752, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30236740

RESUMO

Sauvignon blanc grapes were exposed to an ultra-violet (UV) light source post-hand harvest (whole bunches) or post-machine harvest. The thiol precursors S-3-(hexan-1-ol)-l-cysteine (Cys-3MH) and S-3-(hexan-1-ol)-l-glutathione (GSH-3MH) were quantified in the juices before and after UV treatment. Results showed that irradiation of the grapes with UV light had little to no effect on the thiol precursors. Wines were fermented from the corresponding juices and 18 aroma compounds were quantified. Differences were found between UV treatments of the wines for 3-mercaptohexanol, hexan-1-ol, ethyl butanoate, ethyl hexanoate, ethyl octanoate and phenylethyl alcohol. However, these changes were not significant (p < 0.05) for both grape media trialled. Future studies involving larger sample sizes and replicate numbers should be completed in order to ascertain any changes in aroma chemistry as a result of UV light application to grapes postharvest.


Assuntos
Irradiação de Alimentos/métodos , Compostos de Sulfidrila/efeitos da radiação , Raios Ultravioleta , Vitis/química , Vinho/análise , Odorantes
14.
J Chromatogr A ; 1537: 91-98, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29352581

RESUMO

Sesquiterpenes are a widespread class of compounds of increasing interest found in grapes and wines, amongst many other natural sources. Due to a lack of standards and the complexity of the mass spectra fragmentation, accurate quantification of these low concentration compounds had not previously been accomplished. The current paper presents a new method for the concurrent quantification of several sesquiterpenes. The multivariate method optimisation is presented. Synthesised isotopic standards were utilised in conjunction with solid phase microextraction (SPME) and gas chromatography-tandem mass spectrometry (GC-MS/MS) to perform a standard isotope dilution assay (SIDA). The method was successfully applied to several grape must samples of four different cultivar. To the best of our knowledge this was the first time some of these sesquiterpenes were quantified in grape.


Assuntos
Análise de Alimentos/métodos , Frutas/química , Sesquiterpenos/análise , Espectrometria de Massas em Tandem , Vitis/química , Cromatografia Gasosa-Espectrometria de Massas , Técnicas de Diluição do Indicador , Isótopos/análise , Microextração em Fase Sólida , Vinho/análise
15.
FEMS Yeast Res ; 17(5)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28810701

RESUMO

An early burst of hydrogen sulfide (H2S) produced by Saccharomyces cerevisiae during fermentation could increase varietal thiols and therefore enhance desirable tropical aromas in varieties such as Sauvignon Blanc. Here we attempted to identify genes affecting H2S formation from cysteine by screening yeast deletion libraries via a colony colour assay on media resembling grape juice. Both Δlst4 and Δlst7 formed lighter coloured colonies and produced significantly less H2S than the wild type on high concentrations of cysteine, likely because they are unable to take up cysteine efficiently. We then examined the nine known cysteine permeases and found that deletion of AGP1, GNP1 and MUP1 led to reduced production of H2S from cysteine. We further showed that deleting genes involved in the SPS-sensing pathway such as STP1 and DAL81 also reduced H2S from cysteine. Together, this study indirectly confirms that Agp1p, Gnp1p and Mup1p are the major cysteine permeases and that they are regulated by the SPS-sensing and target of rapamycin pathways under the grape juice-like, cysteine-supplemented, fermentation conditions. The findings highlight that cysteine transportation could be a limiting factor for yeast to generate H2S from cysteine, and therefore selecting wine yeasts without defects in cysteine uptake could maximise thiol production potential.


Assuntos
Cisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Fermentação , Deleção de Genes , Testes Genéticos , Proteínas de Saccharomyces cerevisiae/genética
16.
ACS Chem Biol ; 12(2): 414-421, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-27935278

RESUMO

During glycolysis, yeast generates methylglyoxal (MG), a toxic metabolite that affects growth. Detoxification can occur when glyoxylase I (GLO1) and glyoxylase II (GLO2) convert MG to lactic acid. We have identified an additional, previously unrecognized role for GLO1 in sulfur assimilation in the yeast Saccharomyces cerevisiae. During a screening for putative carbon-sulfur lyases, the glo1 deletion strain showed significant production of H2S during fermentation. The glo1 strain also assimilated sulfate inefficiently but grew normally on cysteine. These phenotypes are consistent with reduced activity of the O-acetyl homoserine sulfhydrylase, Met17p. Overexpression of Glo1p gave a dominant negative phenotype that mimicked the glo1 and met17 deletion strain phenotypes. Western analysis revealed reduced expression of Met17p in the glo1 deletion, but there was no indication of an altered conformation of Met17p or any direct interaction between the two proteins. Unravelling a novel function in sulfur assimilation and H2S generation in yeast for a gene never connected with this pathway provides new opportunities for the study of this molecule in cell signaling, as well as the potential regulation of its accumulation in the wine and beer industry.


Assuntos
Cisteína Sintase/metabolismo , Lactoilglutationa Liase/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cisteína Sintase/genética , Fermentação , Deleção de Genes , Genes Fúngicos , Sulfeto de Hidrogênio/metabolismo , Mutação , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética
17.
FEMS Yeast Res ; 16(8)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27915245

RESUMO

The undesirable rotten-egg odour of hydrogen sulfide (H2S) produced by yeast shortly after yeast inoculation of grape musts might be an important source of desirable varietal thiols, which contribute to tropical aromas in varieties such as Sauvign-on Blanc. In this study, we observed that Saccharomyces cerevisiae strains produce an early burst of H2S from cysteine. Both Δmet2 and Δmet17 strains produce a larger burst, likely because they are unable to utilise the H2S in the sulfate assimilation pathway. For the first time, we show that TUM1 is partly responsible for the early production of H2S from cysteine. Overex-pressing TUM1 elevated production of H2S, whilst its deletion yields only half of the H2S. We further confirmed that yeast convert cysteine to H2S by analysing growth of mutants lacking components of the transsulfuration pathway. High concent-rations of cysteine overcame this growth block, but required TUM1 Collectively, the data indicate that S. cerevisiae does not convert cysteine to sulfate or sulfite, but rather to sulfide via a novel pathway that requires the action of Tum1p. The findi-ngs of this study may allow the improvement of commercial yeasts through the manipulation of sulfur metabolism that are better suited towards production of fruit-driven styles.


Assuntos
Proteínas de Transporte/metabolismo , Cisteína/metabolismo , Fermentação , Sulfeto de Hidrogênio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Locos de Características Quantitativas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade da Espécie
18.
FEMS Yeast Res ; 16(5)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27364827

RESUMO

The level of linoleic acid in the Sauvignon blanc (SB) grape juice affects the development of different aroma compounds during fermentation by Saccharomyces cerevisiae EC1118, including key varietal thiols such as 3-mercaptohexanol (3MH) and 3-mercaptohexyl acetate (3MHA). However, it is still unknown if linoleic acid would affect in a similar way other commonly used S. cerevisiae wine strains. Here we investigated the effect of grape juice linoleic acid on the development of aroma compounds and other metabolites of SB wines using different wine yeast strains: EC1118, AWRI796 and VIN13. Linoleic acid clearly affected the levels of acetylated aroma compounds, several amino acids, and antioxidant molecules, independent of yeast strain, but the production of 3MH was affected by linoleic acid in a strain-specific manner. Moreover, the supplementation of deuterium-labelled 3MH also affected the production of varietal thiols in a strain-specific way. Linoleic acid reduced the acetylation process probably by inhibiting an acetyltransferase, an effect that was independent of the yeast strain. However, regulation of the 3MH biosynthesis is strain-specific, which suggests a mindful consideration not only towards the wine yeast but also to the linoleic acid concentration in the grape juice in order to obtain the desired wine aroma characteristics.


Assuntos
Fermentação , Aromatizantes/metabolismo , Ácido Linoleico/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Vinho/análise
19.
Food Chem ; 209: 341-7, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27173572

RESUMO

Hydrogen sulfide (H2S) is produced by yeast during winemaking and possesses off-flavors reminiscent of rotten eggs. The production of H2S during fermentation has also been associated in the finished wine with the rise of additional volatile sulfur compounds (VSCs) with strong aromas of cooked onions and vegetables. To characterize these more complex VSCs produced from H2S, we performed fermentations in synthetic grape juice. H2S production was manipulated experimentally by feeding increasing concentrations of sulfate to mutant strains that are unable to incorporate H2S efficiently as part of the sulfur assimilation pathway. In finished wines from these mutants, three VSCs - ethanethiol, S-ethyl thioacetate and diethyl disulfide - increased proportionally to H2S. (34)S-labeled sulfate fed to the MET17-deleted strain was incorporated into same three VSCs, demonstrating that they are formed directly from H2S.


Assuntos
Acetatos/análise , Fermentação , Sulfeto de Hidrogênio/análise , Saccharomyces cerevisiae/metabolismo , Compostos de Sulfidrila/análise , Sulfetos/análise , Vitis/metabolismo , Vinho/análise , Cisteína Sintase/genética , Frutas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sulfatos/química
20.
Food Chem ; 207: 16-9, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27080874

RESUMO

Grape pomace is a winemaking by-product that can be used to extract oenological tannins. Recently, some grape skin tannins were shown to contain very high amounts of two polyfunctional thiol precursors (3-S-glutathionylhexan-1-ol, 3-S-cysteinylhexan-1-ol) whose free forms are responsible for appreciated tropical-like flavours. This study shows that an oxidative treatment (no SO2) of white grape pomace and the presence of grape leaves and stems can increase the content of the above mentioned precursors. Moreover, it shows significant differences between Sauvignon Blanc, Gewuerztraminer and Mueller-Thurgau grape pomace for the 3-mercaptohexan-1-ol precursors and 4-S-cysteinyl-4-methylpentan-2-one. The grape cultivar is crucial, but the technological ability of enhancing the level of the volatile thiol precursors simply by treating the grape marc in different ways is a promising and powerful tool for the production of potentially flavouring tannins intended for food and beverage industry.


Assuntos
Reagentes de Sulfidrila/química , Taninos/metabolismo , Vitis/química , Vinho/análise , Humanos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA