Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(3): 201, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461287

RESUMO

Sarcopenia, a progressive and prevalent neuromuscular disorder, is characterized by age-related muscle wasting and weakening. Despite its widespread occurrence, the molecular underpinnings of this disease remain poorly understood. Herein, we report that levels of Agrin, an extracellular matrix (ECM) protein critical for neuromuscular formation, were decreased with age in the skeletal muscles of mice. The conditional loss of Agrin in myogenic progenitors and satellite cells (SCs) (Pax7 Cre:: Agrin flox/flox) causes premature muscle aging, manifesting a distinct sarcopenic phenotype in mice. Conversely, the elevation of a miniaturized form of Agrin in skeletal muscle through adenovirus-mediated gene transfer induces enhanced muscle capacity in aged mice. Mechanistic investigations suggest that Agrin-mediated improvement in muscle function occurs through the stimulation of Yap signaling and the concurrent upregulation of dystroglycan expression. Collectively, our findings underscore the pivotal role of Agrin in the aging process of skeletal muscles and propose Agrin as a potential therapeutic target for addressing sarcopenia.


Assuntos
Agrina , Sarcopenia , Animais , Camundongos , Agrina/genética , Agrina/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Sarcopenia/genética , Transdução de Sinais
2.
Neuroscience ; 490: 66-78, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35124166

RESUMO

Schizophrenia is a neurodevelopmental disorder with dendrite and dendritic spine dysfunction. Dysbindin-1, a protein decreased in the brains of schizophrenia patients, is involved in the development of dendrites and spines. However, it is still unclear how the role of dysbindin-1 in neuronal development is regulated. Here, we showed protein kinase B/Akt1, a serine/threonine kinase implicated in schizophrenia, phosphorylated dysbindin-1A at serine 10 (S10). S10 phosphorylation of dysbindin-1A was increased during postnatal neuronal and synapse development stage, and was enriched in postsynaptic densities (PSDs). Furthermore, overexpressing wild type or S10 phospho-mimic mutant (S10D), but not S10 phospho-dead mutant (S10A) of dysbindin-1A rescued the dendrite and spine deficits in dysbindin-1A knockdown neurons. These results indicate S10 phosphorylation of dysbindin-1A by Akt1 is essential for neuronal development, providing a potential regulation mechanism for dysbindin-1A in neuronal development.


Assuntos
Disbindina , Proteínas Proto-Oncogênicas c-akt , Esquizofrenia , Disbindina/metabolismo , Proteínas Associadas à Distrofina , Humanos , Neurogênese , Esquizofrenia/metabolismo , Serina
3.
Transl Psychiatry ; 11(1): 361, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34226493

RESUMO

The precise control of the nervous system function under the vitality of synapses is extremely critical. Efforts have been taken to explore the underlying cellular and molecular mechanisms for synapse formation. Cell adhesion molecules have been found important for synapse assembly in the brain. Many trans-adhesion complexes have been identified to modulate excitatory synapse formation. However, little is known about the synaptogenic mechanisms for inhibitory synapses. ErbB4 is a receptor tyrosine kinase enriched in interneurons. Here, we showed that overexpressing ErbB4 in HEK293T cells induced gephyrin or GABAAR α1 puncta in co-cultured primary hippocampal neurons. This induction of ErbB4 was independent of its kinase activity. K751M, a kinase-dead mutant of ErbB4, can also induce gephyrin or GABAAR α1 puncta in the co-culture system. We further constructed K751M knock-in mice and found that the homozygous were viable at birth and fertile without changes in gross brain structure. The number of interneurons and inhibitory synapses onto pyramidal neurons (PyNs) were comparable between K751M and wild-type mice but decreased in ErbB4-Null mice. Moreover, ErbB4 can interact in trans with Slitrk3, a transmembrane postsynaptic protein at inhibitory synapses, through the extracellular RLD domain of ErbB4. The deletion of RLD diminished the induction of gephyrin or GABAAR α1 puncta by ErbB4. Finally, disruption of ErbB4-Slitrk3 interaction through neutralization of Slitrk3 by secretable RLD decreased inhibitory synapses onto PyNs and impaired GABAergic transmission. These results identify that ErbB4, as a cell adhesion molecule, promotes inhibitory synapse formation onto PyNs by interacting with Slitrk3 and in a kinase-independent manner, providing an unexpected mechanism of ErbB4 in inhibitory synapse formation.


Assuntos
Neurogênese , Sinapses , Animais , Adesão Celular , Células HEK293 , Hipocampo , Humanos , Camundongos , Receptor ErbB-4/genética
4.
Cell Death Dis ; 12(4): 403, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854034

RESUMO

The genes encoding for neuregulin1 (NRG1), a growth factor, and its receptor ErbB4 are both risk factors of major depression disorder and schizophrenia (SZ). They have been implicated in neural development and synaptic plasticity. However, exactly how NRG1 variations lead to SZ remains unclear. Indeed, NRG1 levels are increased in postmortem brain tissues of patients with brain disorders. Here, we studied the effects of high-level NRG1 on dendritic spine development and function. We showed that spine density in the prefrontal cortex and hippocampus was reduced in mice (ctoNrg1) that overexpressed NRG1 in neurons. The frequency of miniature excitatory postsynaptic currents (mEPSCs) was reduced in both brain regions of ctoNrg1 mice. High expression of NRG1 activated LIMK1 and increased cofilin phosphorylation in postsynaptic densities. Spine reduction was attenuated by inhibiting LIMK1 or blocking the NRG1-LIMK1 interaction, or by restoring NRG1 protein level. These results indicate that a normal NRG1 protein level is necessary for spine homeostasis and suggest a pathophysiological mechanism of abnormal spines in relevant brain disorders.


Assuntos
Quinases Lim/metabolismo , Neuregulina-1/metabolismo , Neurônios/metabolismo , Coluna Vertebral/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Camundongos , Neuregulina-1/genética , Plasticidade Neuronal/fisiologia , Receptor ErbB-4/metabolismo , Coluna Vertebral/patologia , Sinapses/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(51): 13105-13110, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30498032

RESUMO

Neurotrophic factor NRG1 and its receptor ErbB4 play a role in GABAergic circuit assembly during development. ErbB4 null mice possess fewer interneurons, have decreased GABA release, and show impaired behavior in various paradigms. In addition, NRG1 and ErbB4 have also been implicated in regulating GABAergic transmission and plasticity in matured brains. However, current ErbB4 mutant strains are unable to determine whether phenotypes in adult mutant mice result from abnormal neural development. This important question, a glaring gap in understanding NRG1-ErbB4 function, was addressed by using two strains of mice with temporal control of ErbB4 deletion and expression, respectively. We found that ErbB4 deletion in adult mice impaired behavior and GABA release but had no effect on neuron numbers and morphology. On the other hand, some deficits due to the ErbB4 null mutation during development were alleviated by restoring ErbB4 expression at the adult stage. Together, our results indicate a critical role of NRG1-ErbB4 signaling in GABAergic transmission and behavior in adulthood and suggest that restoring NRG1-ErbB4 signaling at the postdevelopmental stage might benefit relevant brain disorders.


Assuntos
Comportamento Animal , Encéfalo/patologia , Interneurônios/patologia , Neuregulina-1/metabolismo , Receptor ErbB-4/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Animais , Encéfalo/metabolismo , Interneurônios/metabolismo , Camundongos , Camundongos Knockout , Neuregulina-1/genética , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo
6.
Neuroscience ; 373: 113-121, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29339325

RESUMO

Myasthenia gravis (MG) is an autoimmune disorder of the neuromuscular junction (NMJ). Most cases of MG are caused by autoantibodies against the acetylcholine receptor (AChR), muscle-specific kinase (MuSK) and low-density lipoprotein receptor-related protein 4 (LRP4). Recent studies have identified anti-agrin antibodies in MG patients lacking these three antibodies (i.e., triple negative MG). Agrin is a basal lamina protein that has two isoforms. Neural agrin (N-agrin) binds to LRP4 to activate MuSK to induce AChR clusters and is thus critical for NMJ formation. We demonstrate that mice immunized with N-agrin showed MG-associated symptoms including muscle weakness, fragmented and distorted NMJs. These effects were not observed in mice injected with muscle agrin (M-agrin), an isoform that is inactive in inducing AChR clusters. Treatment with anti-N-agrin, but not anti-M-agrin, antibodies reduced agrin-induced AChR clusters in muscle cells. Together, these observations suggest that agrin antibodies may be play a role in MG pathogenesis.


Assuntos
Agrina/imunologia , Autoanticorpos/biossíntese , Miastenia Gravis/imunologia , Animais , Modelos Animais de Doenças , Escherichia coli , Feminino , Imunização , Camundongos , Força Muscular/imunologia , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Miastenia Gravis/patologia , Junção Neuromuscular/imunologia , Junção Neuromuscular/patologia , Isoformas de Proteínas/imunologia , Receptores Colinérgicos/metabolismo , Proteínas Recombinantes/imunologia
7.
Acta Pharmacol Sin ; 39(4): 597-606, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29219947

RESUMO

Dendritic cell nuclear protein-1 (DCNP1) is a protein associated with major depression. In the brains of depression patients, DCNP1 is up-regulated. However, how DCNP1 participates in the pathogenesis of major depression remains unknown. In this study, we first transfected HEK293 cells with EGFP-DCNP1 and demonstrated that the full-length DCNP1 protein was localized in the nucleus, and RRK (the residues 117-119) composed its nuclear localization signal (NLS). An RRK-deletion form of DCNP1 (DCNP1ΔRRK) and truncated form (DCNP11-116), each lacking the RRK residues, did not show the specific nuclear localization like full-length DCNP1 in the cells. A rat glioma cell line C6 can synthesize melatonin, a hormone that plays important roles in both sleep and depression. We then revealed that transfection of C6 cells with full-length DCNP1 but not DCNP1ΔRRK or DCNP11-116 significantly decreased the levels of melatonin. Furthermore, overexpression of full-length DCNP1, but not DCNP1ΔRRK or DCNP11-116, in C6 cells significantly decreased both the mRNA and protein levels of N-acetyltransferase (NAT), a key enzyme in melatonin synthesis. Full-length DCNP1 but not DCNP1ΔRRK or DCNP11-116 was detected to interact with the Nat promoter and inhibited its activity through its E-box motif. Furthermore, full-length DCNP1 but not the mutants interacted with and repressed the transcriptional activity of BMAL1, a transcription factor that transactivates Nat through the E-box motif. In conclusion, we have shown that RRK (the residues 117-119) are the NLS responsible for DCNP1 nuclear localization. Nuclear DCNP1 represses NAT expression and melatonin biosynthesis by interacting with BMAL1 and repressing its transcriptional activity. Our study reveals a connection between the major depression candidate protein DCNP1, circadian system and melatonin biosynthesis, which may contribute to the pathogenesis of depression.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Acetiltransferases/antagonistas & inibidores , Melatonina/biossíntese , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição ARNTL/genética , Acetiltransferases/genética , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Sinais de Localização Nuclear , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/metabolismo , Ratos , Proteínas Repressoras/genética , Deleção de Sequência , Transcrição Gênica
8.
Sci Signal ; 5(238): ra61, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22912494

RESUMO

Inflammation in Parkinson's disease is closely associated with disease pathogenesis. Mutations in Omi, which encodes the protease Omi, are linked to neurodegeneration and Parkinson's disease in humans and in mouse models. The severe neurodegeneration and neuroinflammation that occur in mnd2 (motor neuron degeneration 2) mice result from loss of the protease activity of Omi by the point mutation S276C; however, the substrates of Omi that induce neurodegeneration are unknown. We showed that Omi was required for the production of inflammatory molecules by microglia, which are the resident macrophages in the central nervous system. Omi suppressed the activation of the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase 1 and 2 (ERK1/2) by cleaving the upstream kinase MEK1 (mitogen-activated or extracellular signal-regulated protein kinase kinase 1). Knockdown of Omi in microglial cell lines led to activation of ERK1/2 and resulted in degradation of IκBα [α inhibitor of nuclear factor κB (NF-κB)], resulting in NF-κB activation and the expression of genes encoding inflammatory molecules, such as tumor necrosis factor-α and inducible nitric oxide synthase. The production of inflammatory molecules induced by the knockdown of Omi was blocked by the MEK1-specific inhibitor U0126. Furthermore, expression of the protease-deficient S276C Omi mutant in a microglial cell line had no effect on MEK1 cleavage or ERK1/2 activation. In the brains of mnd2 mice, we observed increased transcription of several genes encoding inflammatory molecules, as well as activation of astrocytes and microglia. Therefore, our study demonstrates that Omi is an intrinsic cellular factor that inhibits neuroinflammation.


Assuntos
MAP Quinase Quinase 1/metabolismo , Microglia/metabolismo , Proteínas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo , Serina Endopeptidases/metabolismo , Animais , Western Blotting , Butadienos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Proteínas I-kappa B/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , MAP Quinase Quinase 1/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/efeitos dos fármacos , Proteínas Mitocondriais/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Nitrilas/farmacologia , Mutação Puntual , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina Endopeptidases/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
J Biol Chem ; 285(49): 38630-40, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20921223

RESUMO

Dysbindin-1 is a 50-kDa coiled-coil-containing protein encoded by the gene DTNBP1 (dystrobrevin-binding protein 1), a candidate genetic factor for schizophrenia. Genetic variations in this gene confer a susceptibility to schizophrenia through a decreased expression of dysbindin-1. It was reported that dysbindin-1 regulates the expression of presynaptic proteins and the release of neurotransmitters. However, the precise functions of dysbindin-1 are largely unknown. Here, we show that dysbindin-1 is a novel nucleocytoplasmic shuttling protein and translocated to the nucleus upon treatment with leptomycin B, an inhibitor of exportin-1/CRM1-mediated nuclear export. Dysbindin-1 harbors a functional nuclear export signal necessary for its nuclear export, and the nucleocytoplasmic shuttling of dysbindin-1 affects its regulation of synapsin I expression. In brains of sandy mice, a dysbindin-1-null strain that displays abnormal behaviors related to schizophrenia, the protein and mRNA levels of synapsin I are decreased. These findings demonstrate that the nucleocytoplasmic shuttling of dysbindin-1 regulates synapsin I expression and thus may be involved in the pathogenesis of schizophrenia.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica , Esquizofrenia/metabolismo , Sinapsinas/biossíntese , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Animais , Antibióticos Antineoplásicos/farmacologia , Encéfalo/metabolismo , Proteínas de Transporte/genética , Núcleo Celular/genética , Citoplasma/genética , Disbindina , Proteínas Associadas à Distrofina , Ácidos Graxos Insaturados/farmacologia , Células HEK293 , Humanos , Carioferinas/antagonistas & inibidores , Carioferinas/genética , Carioferinas/metabolismo , Camundongos , Camundongos Mutantes , Terminações Pré-Sinápticas/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Esquizofrenia/genética , Sinapsinas/genética , Proteína Exportina 1
10.
Hum Mol Genet ; 18(22): 4268-81, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19661182

RESUMO

Superoxide dismutase-1 (SOD1) and ataxin-3 are two neurodegenerative disease proteins in association with familial amyotrophic lateral sclerosis and Machado-Joseph disease/spinocerebellar ataxia type 3. Both normal and mutant types of SOD1 and ataxin-3 are degraded by the proteasome. It was recently reported that these two proteins are associated with the endoplasmic reticulum (ER). Mammalian gp78 is an E3 ubiquitin ligase involved in ER-associated degradation (ERAD). Here, we show that gp78 interacts with both SOD1 and ataxin-3. Overexpression of gp78 promotes the ubiquitination and degradation of these two proteins, whereas knockdown of gp78 stabilizes them. Moreover, gp78 represses aggregate formation of mutant SOD1 and protect cells against mutant SOD1-induced cell death. Furthermore, gp78 is increased in cells transfected with these two mutant proteins as well as in ALS mice. Thus, our results suggest that gp78 functions in the regulation of SOD1 and ataxin-3 to target them for ERAD.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Citocinas/metabolismo , Proteínas Repressoras/metabolismo , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Ataxina-3 , Linhagem Celular , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Humanos , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Proteínas Nucleares/genética , Ligação Proteica , Receptores do Fator Autócrino de Motilidade , Receptores de Citocinas/genética , Proteínas Repressoras/genética , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
11.
Neurosci Bull ; 24(4): 201-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18668148

RESUMO

OBJECTIVE: Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a dominant neurodegenerative disorder caused by an expansion of the polyglutamine (polyQ) tract in MJD-1 gene product, ataxin-3 (AT3). This disease is characterized by the formation of intraneuronal inclusions, but the mechanism underlying their formation is still poorly understood. The present study is to explore the relationship between wild type (WT) AT3 and polyQ expanded AT3. METHODS: Mouse neuroblastoma (N2a) cells or HEK293 cells were co-transfected with WT AT3 and different truncated forms of expanded AT3. The expressions of WT AT3 and the truncated forms of expanded AT3 were detected by Western blotting, and observed by an inverted fluorescent microscope. The interactions between AT3 and different truncated forms of expanded AT3 were detected by immunoprecipitation and GST pull-down assays. RESULTS: Using fluorescent microscope, we observed that the truncated forms of expanded AT3 aggregate in transfected cells, and the full-length WT AT3 is recruited onto the aggregates. However, no aggregates were observed in cells transfected with the truncated forms of WT AT3. Immunoprecipitation and GST pull-down analyses indicate that WT AT3 interacts with the truncated AT3 in a polyQ length-dependent manner. CONCLUSION: WT AT3 deposits in the aggregation that was formed by polyQ expanded AT3, which suggests that the formation of AT3 aggregation may affect the normal function of WT AT3 and increase polyQ protein toxicity in MJD.


Assuntos
Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Ataxina-3 , Western Blotting , Linhagem Celular , Imunoprecipitação , Doença de Machado-Joseph/metabolismo , Camundongos , Microscopia de Fluorescência , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Transfecção
12.
FEBS Lett ; 582(7): 1151-6, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18339323

RESUMO

Sumoylation is an important post-translational modification, which is also involved in the pathogenesis of many neurodegenerative diseases. We previously reported that DJ-1 decreases Bcl-2 associated X protein expression through repressing p53 transcriptional activity. Here we show that DJ-1(K130R), the non-sumoylatable mutant form of DJ-1, shifts from nucleus to cytoplasm, fails to repress p53 transcriptional activity and loses its protective function against ultraviolet induced cell death. Our findings suggest that sumoylation is critical for DJ-1 to repress p53 transcriptional activity.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Transporte Ativo do Núcleo Celular , Animais , Apoptose , Linhagem Celular , Núcleo Celular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Mutação , Proteínas Oncogênicas/genética , Regiões Promotoras Genéticas , Proteína Desglicase DJ-1 , Processamento de Proteína Pós-Traducional , Transcrição Gênica , Proteína X Associada a bcl-2/genética
13.
J Biol Chem ; 283(7): 4022-30, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18042550

RESUMO

DJ-1, originally identified as an oncogene product, is a protein with various functions in cellular transformation, oxidative stress response, and transcriptional regulation. Although previous studies suggest that DJ-1 is cytoprotective, the mechanism by which DJ-1 exerts its survival functions remains largely unknown. Here we show that DJ-1 exerts its cytoprotection through inhibiting p53-Bax-caspase pathway. DJ-1 interacts with p53 in vitro and in vivo. Overexpression of DJ-1 decreases the expression of Bax and inhibits caspase activation, whereas knockdown of DJ-1 increases Bax protein levels and accelerates caspase-3 activation and cell death induced by UV exposure. Our data provide evidence that the protective effects of DJ-1 on apoptosis are associated with its ability of decreasing Bax level through inhibiting p53 transcriptional activity.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Oncogênicas/fisiologia , Transcrição Gênica/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Sequência de Bases , Caspases/metabolismo , Linhagem Celular , Primers do DNA , Humanos , Peróxido de Hidrogênio/farmacologia , Imunoprecipitação , Proteína Desglicase DJ-1 , Proteína Supressora de Tumor p53/fisiologia , Raios Ultravioleta
14.
Neurosci Lett ; 423(2): 118-22, 2007 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-17681692

RESUMO

Nurr1 is an orphan nuclear receptor essential for development and survival of dopaminergic neurons. Mutations in Nurr1 are associated with Parkinson's disease (PD) and there is a correlation between Nurr1 and tyrosine hydroxylase (TH) expression in PD brain. Two domains, activation function 1 (AF1) at the N-terminus and AF2 at the C-terminus of Nurr1, are important for Nurr1 activation. AF1 domain is conserved in NGFI-B/Nurr1/Nor-1 family members and MAPK signal pathway is involved in AF1 activity. Using in vitro phoshorylation assays, we have shown that ERK2 is a kinase to phosphorylate Nurr1 on multiple sites. S126 and T132, which are located near AF1 core of Nurr1, are dominant sites phosphorylated by ERK2. Moreover, using GST pull-down and co-IP assays, we identified that both the N-terminus of Nurr1 containing three ERK docking domains and another ERK docking domain in Nurr1 DNA binding domain are able to bind to ERK2. Furthermore, overexpression of a constitutively active form of MEK1, together with Nurr1 and mouse ERK2, greatly increases the tyrosine hydroxylase expression in SH-SY5Y cells. Reporter gene assays show that Nurr1Delta124-133/T185A, an ERK2 phospho-site mutant form, could not further increase its transcriptional activity on TH promoter, suggesting that Nurr1 phosphorylation by ERK2 may regulate its transcriptional activity on TH promoter. Thus, our results indicate that Nurr1 phosphorylation by ERK2 may play a role in regulating the TH expression.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fatores de Transcrição/metabolismo , Tirosina 3-Mono-Oxigenase/biossíntese , Linhagem Celular , Proteínas de Ligação a DNA/genética , Eletroforese em Gel de Poliacrilamida , Humanos , Immunoblotting , Imunoprecipitação , Técnicas In Vitro , Neoplasias , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Fosforilação , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Transcrição Gênica , Transfecção , Regulação para Cima
15.
J Biol Chem ; 282(19): 14558-66, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17360705

RESUMO

alpha-Synuclein (alpha-syn) and ubiquitin (Ub) are major protein components deposited in Lewy bodies (LBs) and Lewy neurites, which are pathologic hallmarks of idiopathic Parkinson disease (PD). Almost 90% of alpha-syn in LBs is phosphorylated at serine 129 (Ser(129)). However, the role of Ser(129)-phosphorylated alpha-syn in the biogenesis of LBs remains unclear. Here, we show that compared with coexpression of wild type (WT)alpha-syn and Ub, coexpression of phospho-mimic mutant alpha-syn (S129D) and Ub in neuro2a cells results in an increase of Ub-conjugates and the formation of ubiquitinated inclusions. Furthermore, S129D alpha-syn fails to increase the Ub-conjugates and form ubiquitinated inclusions in the presence of a K63R mutant Ub. In addition, as compared with WT alpha-syn, S129D alpha-syn increased cytoplasmic and neuritic aggregates of itself in neuro2a cells treated with H(2)O(2) and serum deprivation. These results suggest that the contribution of Ser(129)-phosphorylated alpha-syn to the Lys(63)-linked Ub-conjugates and aggregation of itself may be involved in the biogenesis of LBs in Parkinson disease and other related synucleinopathies.


Assuntos
Corpos de Lewy/metabolismo , Lisina/metabolismo , Neuroblastoma/metabolismo , Ubiquitina/metabolismo , alfa-Sinucleína/metabolismo , Animais , Immunoblotting , Corpos de Inclusão , Corpos de Lewy/patologia , Lisina/química , Camundongos , Mutação/genética , Neuroblastoma/patologia , Fosforilação , Frações Subcelulares , Células Tumorais Cultivadas , alfa-Sinucleína/genética
16.
J Neurochem ; 101(6): 1651-61, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17302910

RESUMO

Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative disorder caused by an expansion of the polyglutamine tract near the C-terminus of the MJD-1 gene product, ataxin-3. Ataxin-3 is degraded by the proteasome. However, the precise mechanism of ataxin-3 degradation remains to be elucidated. In this study, we show direct links between ataxin-3 and the proteasome. p45, an ATPase subunit of the 19S proteasome, interacts with ataxin-3 in vitro and stimulates the degradation of ataxin-3 in an in vitro reconstituted degradation assay system. The effect of p45 on ataxin-3 degradation is blocked by MG132, a proteasome inhibitor. In N2a or 293 cells, overexpression of p45 strikingly enhances the clearance of both normal and expanded ataxin-3, but not alpha synuclein or SOD1, implying a functional specificity of p45 in this proteolytic process. The N-terminus of ataxin-3, which serves as a recognition site by p45, is necessary for the proteolytic process of ataxin-3. We also show that other three ATPases of the 19S proteasome, MSS1, p48, and p56 have no effect on ataxin-3 degradation. These data provide evidence that p45 plays an important role in regulating ataxin-3 degradation by the proteasome.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Proteínas Repressoras/metabolismo , Animais , Ataxina-3 , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Imunoprecipitação , Leupeptinas/farmacologia , Doença de Machado-Joseph/metabolismo , Camundongos , Peptídeos/metabolismo , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA