Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 112(6): 931-940, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230545

RESUMO

Tumor hypoxia, resulting from rapid tumor growth and aberrant vascular proliferation, exacerbates tumor aggressiveness and resistance to treatments like radiation and chemotherapy. To increase tumor oxygenation, we developed solid oxygen gas-entrapping materials (O2-GeMs), which were modeled after clinical brachytherapy implants, for direct tumor implantation. The objective of this study was to investigate the impact different formulations of solid O2-GeMs have on the entrapment and delivery of oxygen. Using a Parr reactor, we fabricated solid O2-GeMs using carbohydrate-based formulations used in the confectionary industry. In evaluating solid O2-GeMs manufactured from different sugars, the sucrose-containing formulation exhibited the highest oxygen concentration at 1 mg/g, as well as the fastest dissolution rate. The addition of a surface coating to the solid O2-GeMs, especially polycaprolactone, effectively prolonged the dissolution of the solid O2-GeMs. In vivo evaluation confirmed robust insertion and positioning of O2-GeMs in a malignant peripheral nerve sheath tumor, highlighting potential clinical applications.


Assuntos
Neoplasias , Oxigênio , Humanos , Hipóxia Tumoral/fisiologia , Neoplasias/tratamento farmacológico
2.
Adv Sci (Weinh) ; 10(10): e2205995, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36727291

RESUMO

Tumor hypoxia drives resistance to many cancer therapies, including radiotherapy and chemotherapy. Methods that increase tumor oxygen pressures, such as hyperbaric oxygen therapy and microbubble infusion, are utilized to improve the responses to current standard-of-care therapies. However, key obstacles remain, in particular delivery of oxygen at the appropriate dose and with optimal pharmacokinetics. Toward overcoming these hurdles, gas-entrapping materials (GeMs) that are capable of tunable oxygen release are formulated. It is shown that injection or implantation of these materials into tumors can mitigate tumor hypoxia by delivering oxygen locally and that these GeMs enhance responsiveness to radiation and chemotherapy in multiple tumor types. This paper also demonstrates, by comparing an oxygen (O2 )-GeM to a sham GeM, that the former generates an antitumorigenic and immunogenic tumor microenvironment in malignant peripheral nerve sheath tumors. Collectively the results indicate that the use of O2 -GeMs is promising as an adjunctive strategy for the treatment of solid tumors.


Assuntos
Oxigenoterapia Hiperbárica , Neoplasias , Humanos , Oxigênio , Neoplasias/tratamento farmacológico , Hipóxia Tumoral , Microambiente Tumoral
3.
Sci Transl Med ; 14(651): eabl4135, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35767653

RESUMO

Carbon monoxide (CO) has long been considered a toxic gas but is now a recognized bioactive gasotransmitter with potent immunomodulatory effects. Although inhaled CO is currently under investigation for use in patients with lung disease, this mode of administration can present clinical challenges. The capacity to deliver CO directly and safely to the gastrointestinal (GI) tract could transform the management of diseases affecting the GI mucosa such as inflammatory bowel disease or radiation injury. To address this unmet need, inspired by molecular gastronomy techniques, we have developed a family of gas-entrapping materials (GEMs) for delivery of CO to the GI tract. We show highly tunable and potent delivery of CO, achieving clinically relevant CO concentrations in vivo in rodent and swine models. To support the potential range of applications of foam GEMs, we evaluated the system in three distinct disease models. We show that a GEM containing CO dose-dependently reduced acetaminophen-induced hepatocellular injury, dampened colitis-associated inflammation and oxidative tissue injury, and mitigated radiation-induced gut epithelial damage in rodents. Collectively, foam GEMs have potential paradigm-shifting implications for the safe therapeutic use of CO across a range of indications.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Monóxido de Carbono/uso terapêutico , Colite/tratamento farmacológico , Gases , Inflamação/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA