Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(2): 113812, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377003

RESUMO

The ability of the mammalian brain to maintain spatial representations of external or internal information for short periods of time has been associated with sustained neuronal spiking and reverberatory neural network activity in the medial entorhinal cortex. Here, we show that conditional genetic deletion of netrin-1 or the netrin receptor deleted-in-colorectal cancer (DCC) from forebrain excitatory neurons leads to deficits in short-term spatial memory. We then demonstrate that conditional deletion of either netrin-1 or DCC inhibits cholinergic persistent firing and show that cholinergic activation of muscarinic receptors expressed by entorhinal cortical neurons promotes persistent firing by recruiting DCC to the plasma membrane. Together, these findings indicate that normal short-term spatial memory function requires the synergistic actions of acetylcholine and netrin-1.


Assuntos
Acetilcolina , Córtex Entorrinal , Animais , Acetilcolina/farmacologia , Netrina-1 , Prosencéfalo , Colinérgicos , Mamíferos
2.
Sci Adv ; 7(22)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34049886

RESUMO

Critical physiological processes such as sleep and stress that underscore health are regulated by an intimate interplay between the endocrine and nervous systems. Here, we asked how fetal exposure to the endocrine disruptor found in common plastics, bisphenol A (BPA), causes lasting effects on adult animal behaviors. Adult mice exposed to low-dose BPA during gestation displayed notable disruption in circadian activity, social interactions, and associated neural hyperactivity, with some phenotypes maintained transgenerationally. Gestational BPA exposure increased vasopressin+ neurons in the suprachiasmatic nucleus (SCN), the region that regulates circadian rhythms, of F1 and F3 generations. Mechanistically, BPA increased proliferation of hypothalamic neural progenitors ex vivo and caused precocious neurogenesis in vivo. Co-antagonism of both estrogen and androgen receptors was necessary to block BPA's effects on hypothalamic neural progenitors, illustrating a dual role for these endocrine targets. Together, gestational BPA exposure affects development of circadian centers, with lasting consequences across generations.


Assuntos
Compostos Benzidrílicos , Fenóis , Animais , Compostos Benzidrílicos/toxicidade , Camundongos , Neurogênese , Fenóis/toxicidade , Núcleo Supraquiasmático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA