Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell Rep Med ; 3(2): 100525, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35243422

RESUMO

Mechanisms of therapeutic resistance and vulnerability evolve in metastatic cancers as tumor cells and extrinsic microenvironmental influences change during treatment. To support the development of methods for identifying these mechanisms in individual people, here we present an omic and multidimensional spatial (OMS) atlas generated from four serial biopsies of an individual with metastatic breast cancer during 3.5 years of therapy. This resource links detailed, longitudinal clinical metadata that includes treatment times and doses, anatomic imaging, and blood-based response measurements to clinical and exploratory analyses, which includes comprehensive DNA, RNA, and protein profiles; images of multiplexed immunostaining; and 2- and 3-dimensional scanning electron micrographs. These data report aspects of heterogeneity and evolution of the cancer genome, signaling pathways, immune microenvironment, cellular composition and organization, and ultrastructure. We present illustrative examples of how integrative analyses of these data reveal potential mechanisms of response and resistance and suggest novel therapeutic vulnerabilities.


Assuntos
Neoplasias da Mama , Biópsia , Neoplasias da Mama/genética , Feminino , Humanos , Microambiente Tumoral/genética
2.
Sci Rep ; 10(1): 21750, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303959

RESUMO

Representative in vitro model systems that accurately model response to therapy and allow the identification of new targets are important for improving our treatment of prostate cancer. Here we describe molecular characterization and drug testing in a panel of 20 prostate cancer cell lines. The cell lines cluster into distinct subsets based on RNA expression, which is largely driven by functional Androgen Receptor (AR) expression. KLK3, the AR-responsive gene that encodes prostate specific antigen, shows the greatest variability in expression across the cell line panel. Other common prostate cancer associated genes such as TMPRSS2 and ERG show similar expression patterns. Copy number analysis demonstrates that many of the most commonly gained (including regions containing TERC and MYC) and lost regions (including regions containing TP53 and PTEN) that were identified in patient samples by the TCGA are mirrored in the prostate cancer cell lines. Assessment of response to the anti-androgen enzalutamide shows a distinct separation of responders and non-responders, predominantly related to status of wild-type AR. Surprisingly, several AR-null lines responded to enzalutamide. These AR-null, enzalutamide-responsive cells were characterized by high levels of expression of glucocorticoid receptor (GR) encoded by NR3C1. Treatment of these cells with the anti-GR agent mifepristone showed that they were more sensitive to this drug than enzalutamide, as were several of the enzalutamide non-responsive lines. This is consistent with several recent reports that suggest that GR expression is an alternative signaling mechanism that can bypass AR blockade. This study reinforces the utility of large cell line panels for the study of cancer and identifies several cell lines that represent ideal models to study AR-null cells that have upregulated GR to sustain growth.


Assuntos
Antagonistas de Androgênios/farmacologia , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Benzamidas , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Humanos , Masculino , Mifepristona/farmacologia , Nitrilas , Feniltioidantoína/farmacologia , Neoplasias da Próstata/genética , RNA/genética , RNA/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores
5.
Cancer Res ; 77(7): 1575-1585, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087598

RESUMO

Molecular networks governing responses to targeted therapies in cancer cells are complex dynamic systems that demonstrate nonintuitive behaviors. We applied a novel computational strategy to infer probabilistic causal relationships between network components based on gene expression. We constructed a model comprised of an ensemble of networks using multidimensional data from cell line models of cell-cycle arrest caused by inhibition of MEK1/2. Through simulation of a reverse-engineered Bayesian network model, we generated predictions of G1-S transition. The model identified known components of the cell-cycle machinery, such as CCND1, CCNE2, and CDC25A, as well as revealed novel regulators of G1-S transition, IER2, TRIB1, TRIM27. Experimental validation of model predictions confirmed 10 of 12 predicted genes to have a role in G1-S progression. Further analysis showed that TRIB1 regulated the cyclin D1 promoter via NFκB and AP-1 sites and sensitized cells to TRAIL-induced apoptosis. In clinical specimens of breast cancer, TRIB1 levels correlated with expression of NFκB and its target genes (IL8, CSF2), and TRIB1 copy number and expression were predictive of clinical outcome. Together, our results establish a critical role of TRIB1 in cell cycle and survival that is mediated via the modulation of NFκB signaling. Cancer Res; 77(7); 1575-85. ©2017 AACR.


Assuntos
Neoplasias da Mama/patologia , Ciclo Celular , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Teorema de Bayes , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Ciclina D1/genética , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , NF-kappa B/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia
6.
Breast Cancer Res ; 18(1): 70, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27368372

RESUMO

BACKGROUND: High mitotic activity is associated with the genesis and progression of many cancers. Small molecule inhibitors of mitotic apparatus proteins are now being developed and evaluated clinically as anticancer agents. With clinical trials of several of these experimental compounds underway, it is important to understand the molecular mechanisms that determine high mitotic activity, identify tumor subtypes that carry molecular aberrations that confer high mitotic activity, and to develop molecular markers that distinguish which tumors will be most responsive to mitotic apparatus inhibitors. METHODS: We identified a coordinately regulated mitotic apparatus network by analyzing gene expression profiles for 53 malignant and non-malignant human breast cancer cell lines and two separate primary breast tumor datasets. We defined the mitotic network activity index (MNAI) as the sum of the transcriptional levels of the 54 coordinately regulated mitotic apparatus genes. The effect of those genes on cell growth was evaluated by small interfering RNA (siRNA). RESULTS: High MNAI was enriched in basal-like breast tumors and was associated with reduced survival duration and preferential sensitivity to inhibitors of the mitotic apparatus proteins, polo-like kinase, centromere associated protein E and aurora kinase designated GSK462364, GSK923295 and GSK1070916, respectively. Co-amplification of regions of chromosomes 8q24, 10p15-p12, 12p13, and 17q24-q25 was associated with the transcriptional upregulation of this network of 54 mitotic apparatus genes, and we identify transcription factors that localize to these regions and putatively regulate mitotic activity. Knockdown of the mitotic network by siRNA identified 22 genes that might be considered as additional therapeutic targets for this clinically relevant patient subgroup. CONCLUSIONS: We define a molecular signature which may guide therapeutic approaches for tumors with high mitotic network activity.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/genética , Genoma Humano/genética , Mitose/efeitos dos fármacos , Aurora Quinases/antagonistas & inibidores , Aurora Quinases/genética , Aurora Quinases/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Amplificação de Genes , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Mitose/genética , Prognóstico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Bibliotecas de Moléculas Pequenas/farmacologia , Resultado do Tratamento , Quinase 1 Polo-Like
7.
PLoS One ; 10(7): e0133219, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26181325

RESUMO

We report here on experimental and theoretical efforts to determine how best to combine drugs that inhibit HER2 and AKT in HER2(+) breast cancers. We accomplished this by measuring cellular and molecular responses to lapatinib and the AKT inhibitors (AKTi) GSK690693 and GSK2141795 in a panel of 22 HER2(+) breast cancer cell lines carrying wild type or mutant PIK3CA. We observed that combinations of lapatinib plus AKTi were synergistic in HER2(+)/PIK3CA(mut) cell lines but not in HER2(+)/PIK3CA(wt) cell lines. We measured changes in phospho-protein levels in 15 cell lines after treatment with lapatinib, AKTi or lapatinib + AKTi to shed light on the underlying signaling dynamics. This revealed that p-S6RP levels were less well attenuated by lapatinib in HER2(+)/PIK3CA(mut) cells compared to HER2(+)/PIK3CAwt cells and that lapatinib + AKTi reduced p-S6RP levels to those achieved in HER2(+)/PIK3CA(wt) cells with lapatinib alone. We also found that that compensatory up-regulation of p-HER3 and p-HER2 is blunted in PIK3CA(mut) cells following lapatinib + AKTi treatment. Responses of HER2(+) SKBR3 cells transfected with lentiviruses carrying control or PIK3CA(mut )sequences were similar to those observed in HER2(+)/PIK3CA(mut) cell lines but not in HER2(+)/PIK3CA(wt) cell lines. We used a nonlinear ordinary differential equation model to support the idea that PIK3CA mutations act as downstream activators of AKT that blunt lapatinib inhibition of downstream AKT signaling and that the effects of PIK3CA mutations can be countered by combining lapatinib with an AKTi. This combination does not confer substantial benefit beyond lapatinib in HER2+/PIK3CA(wt) cells.


Assuntos
Antineoplásicos/farmacologia , Células Epiteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptor ErbB-2/genética , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases , Diaminas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Lapatinib , Glândulas Mamárias Humanas , Mutação , Oxidiazóis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/farmacologia , Quinazolinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Proteína S6 Ribossômica/genética , Proteína S6 Ribossômica/metabolismo , Transdução de Sinais
8.
Proc Natl Acad Sci U S A ; 109(8): 2724-9, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22003129

RESUMO

Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses. These observations suggest mechanisms of response and resistance and may inform efforts to develop molecular assays that predict clinical response.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/classificação , Neoplasias da Mama/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Dosagem de Genes/genética , Humanos , Modelos Biológicos , Transdução de Sinais/genética , Transcrição Gênica/efeitos dos fármacos
9.
Nat Med ; 17(4): 500-3, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21460848

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease. Overall survival is typically 6 months from diagnosis. Numerous phase 3 trials of agents effective in other malignancies have failed to benefit unselected PDA populations, although patients do occasionally respond. Studies in other solid tumors have shown that heterogeneity in response is determined, in part, by molecular differences between tumors. Furthermore, treatment outcomes are improved by targeting drugs to tumor subtypes in which they are selectively effective, with breast and lung cancers providing recent examples. Identification of PDA molecular subtypes has been frustrated by a paucity of tumor specimens available for study. We have overcome this problem by combined analysis of transcriptional profiles of primary PDA samples from several studies, along with human and mouse PDA cell lines. We define three PDA subtypes: classical, quasimesenchymal and exocrine-like, and we present evidence for clinical outcome and therapeutic response differences between them. We further define gene signatures for these subtypes that may have utility in stratifying patients for treatment and present preclinical model systems that may be used to identify new subtype specific therapies.


Assuntos
Carcinoma Ductal Pancreático/classificação , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/classificação , Neoplasias Pancreáticas/genética , Animais , Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Cloridrato de Erlotinib , Feminino , Fator de Transcrição GATA6/genética , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Farmacogenética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Quinazolinas/farmacologia , Proteínas ras/genética , Gencitabina
10.
Alcohol Clin Exp Res ; 35(1): 10-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20958328

RESUMO

BACKGROUND: A low level of response to alcohol during an individual's early experience with alcohol is associated with an increase risk of alcoholism. A family-based genome-wide linkage analysis using sibling pairs that underwent an alcohol challenge where the level of response to alcohol was measured with the Subjective High Assessment Scale (SHAS) implicated the 10q terminal (10qter) region. CYP2E1, a gene known for its involvement with ethanol metabolism, maps to this region. METHODS: Variance component multipoint linkage analysis was performed on a combined map of single-nucleotide polymorphism (SNP) and microsatellite data. To account for the heterogeneity evident in the dataset, a calculation assuming locus heterogeneity was made using the Heterogeneity Log of Odds (HLOD) score. Association between SNP marker allele counts and copy number and SHAS scores were evaluated using a logistic regression model. RESULTS: Linkage analysis detected significant linkage to CYP2E1, which was diminished because of apparent locus heterogeneity traced to a single family with extreme phenotypes. In retrospect, circumstances recorded during testing for this family suggest that their phenotype data are likely to be unreliable. Significant allelic associations were detected for several CYP2E1 polymorphisms and the SHAS score. DNA sequencing from families that contributed the greatest evidence for linkage did not detect any changes directly affecting the primary amino acid sequence. With the removal of a single family, combined evidence from microsatellites and SNPs offers significant linkage between the level of response to alcohol and the region on the end of chromosome 10. CONCLUSION: Combined linkage and association indicate that sequence changes in or near CYP2E1 affect the level of response to alcohol providing a predictor of risk of alcoholism. The absence of coding sequence changes indicates that regulatory sequences are responsible. Implicating CYP2E1 in the level of response to alcohol allows inferences to be made about how the brain perceives alcohol.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/genética , Citocromo P-450 CYP2E1/genética , Ligação Genética , Estudo de Associação Genômica Ampla , Adulto , Consumo de Bebidas Alcoólicas/genética , Cromossomos Humanos Par 10 , Citocromo P-450 CYP2E1/metabolismo , Variações do Número de Cópias de DNA , Família , Feminino , Genótipo , Humanos , Masculino , Pais , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Irmãos , Fumar , Inquéritos e Questionários , Adulto Jovem
11.
Mol Cancer Res ; 8(7): 961-74, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20605923

RESUMO

Protein isoforms produced by alternative splicing (AS) of many genes have been implicated in several aspects of cancer genesis and progression. These observations motivated a genome-wide assessment of AS in breast cancer. We accomplished this by measuring exon level expression in 31 breast cancer and nonmalignant immortalized cell lines representing luminal, basal, and claudin-low breast cancer subtypes using Affymetrix Human Junction Arrays. We analyzed these data using a computational pipeline specifically designed to detect AS with a low false-positive rate. This identified 181 splice events representing 156 genes as candidates for AS. Reverse transcription-PCR validation of a subset of predicted AS events confirmed 90%. Approximately half of the AS events were associated with basal, luminal, or claudin-low breast cancer subtypes. Exons involved in claudin-low subtype-specific AS were significantly associated with the presence of evolutionarily conserved binding motifs for the tissue-specific Fox2 splicing factor. Small interfering RNA knockdown of Fox2 confirmed the involvement of this splicing factor in subtype-specific AS. The subtype-specific AS detected in this study likely reflects the splicing pattern in the breast cancer progenitor cells in which the tumor arose and suggests the utility of assays for Fox-mediated AS in cancer subtype definition and early detection. These data also suggest the possibility of reducing the toxicity of protein-targeted breast cancer treatments by targeting protein isoforms that are not present in limiting normal tissues.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Éxons , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processamento Alternativo , Sítios de Ligação , Neoplasias da Mama/patologia , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Análise em Microsséries , Isoformas de Proteínas , Análise de Sequência de DNA , Transfecção
12.
Cancer Cell ; 17(1): 98-110, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20129251

RESUMO

The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1, and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene signatures of normal brain cell types show a strong relationship between subtypes and different neural lineages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Classical subtype and no benefit in the Proneural subtype. We provide a framework that unifies transcriptomic and genomic dimensions for GBM molecular stratification with important implications for future studies.


Assuntos
Neoplasias Encefálicas/genética , Receptores ErbB/genética , Glioblastoma/genética , Isocitrato Desidrogenase/genética , Neurofibromatose 1/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Adulto , Idoso , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/patologia , Análise Mutacional de DNA , Análise Fatorial , Dosagem de Genes , Expressão Gênica , Perfilação da Expressão Gênica , Glioblastoma/classificação , Glioblastoma/patologia , Humanos , Pessoa de Meia-Idade , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico
13.
Clin Cancer Res ; 16(2): 566-76, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20068098

RESUMO

PURPOSE: Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein, a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have shown a 9% response rate in patients with locally advanced or metastatic breast cancer and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities, or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer, we explored the activity of ispinesib alone and in combination with several therapies approved for the treatment of breast cancer. EXPERIMENTAL DESIGN: We measured the ispinesib sensitivity and pharmacodynamic response of breast cancer cell lines representative of various subtypes in vitro and as xenografts in vivo and tested the ability of ispinesib to enhance the antitumor activity of approved therapies. RESULTS: In vitro, ispinesib displayed broad antiproliferative activity against a panel of 53 breast cell lines. In vivo, ispinesib produced regressions in each of five breast cancer models and tumor-free survivors in three of these models. The effects of ispinesib treatment on pharmacodynamic markers of mitosis and apoptosis were examined in vitro and in vivo, revealing a greater increase in both mitotic and apoptotic markers in the MDA-MB-468 model than in the less sensitive BT-474 model. In vivo, ispinesib enhanced the antitumor activity of trastuzumab, lapatinib, doxorubicin, and capecitabine and exhibited activity comparable with paclitaxel and ixabepilone. CONCLUSIONS: These findings support further clinical exploration of kinesin spindle protein inhibitors for the treatment of breast cancer.


Assuntos
Benzamidas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Carcinoma/tratamento farmacológico , Cinesinas/antagonistas & inibidores , Quinazolinas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Quinazolinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Int J Cancer ; 126(10): 2490-6, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19662653

RESUMO

The inhibitor of basic helix-loop-helix transcription factors, Id-1, is an important gene whose expression increases during prostate cancer progression and that upregulates proliferation, migration and invasion. We used microarray analysis to identify the downstream genes whose transcriptional expression is modulated by Id-1 protein. We compared gene expression in control LNCaP cells and Id-1-transduced LNCaP cells, which become significantly more aggressive after Id-1 overexpression, thus mimicking the high levels of Id-1 detected in metastatic cell lines. We used the Affy HTA U133A Expression Arrays with 45,000 probe sets representing more than 39,000 transcripts. We found that one of the most significantly downregulated genes on Id-1 expression was kallikrein 3 [also called prostate specific antigen (PSA)], the most commonly used biomarker of prostate cancer. Here, we show that the reduction in PSA mRNA and protein expression associated with high-grade prostate cancers, which generally express high levels of Id-1, could be the consequence of Id-1 overexpression.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma/metabolismo , Proteína 1 Inibidora de Diferenciação/metabolismo , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/metabolismo , Western Blotting , Carcinoma/imunologia , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Sequências Hélice-Alça-Hélice/efeitos dos fármacos , Humanos , Proteína 1 Inibidora de Diferenciação/farmacologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Antígeno Prostático Específico/efeitos dos fármacos , Neoplasias da Próstata/imunologia , RNA Interferente Pequeno/metabolismo , Regulação para Cima
15.
BMC Med ; 7: 77, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-20003408

RESUMO

BACKGROUND: Polyamines regulate important cellular functions and polyamine dysregulation frequently occurs in cancer. The objective of this study was to use a systems approach to study the relative effects of PG-11047, a polyamine analogue, across breast cancer cells derived from different patients and to identify genetic markers associated with differential cytotoxicity. METHODS: A panel of 48 breast cell lines that mirror many transcriptional and genomic features present in primary human breast tumours were used to study the antiproliferative activity of PG-11047. Sensitive cell lines were further examined for cell cycle distribution and apoptotic response. Cell line responses, quantified by the GI50 (dose required for 50% relative growth inhibition) were correlated with the omic profiles of the cell lines to identify markers that predict response and cellular functions associated with drug sensitivity. RESULTS: The concentrations of PG-11047 needed to inhibit growth of members of the panel of breast cell lines varied over a wide range, with basal-like cell lines being inhibited at lower concentrations than the luminal cell lines. Sensitive cell lines showed a significant decrease in S phase fraction at doses that produced little apoptosis. Correlation of the GI50 values with the omic profiles of the cell lines identified genomic, transcriptional and proteomic variables associated with response. CONCLUSIONS: A 13-gene transcriptional marker set was developed as a predictor of response to PG-11047 that warrants clinical evaluation. Analyses of the pathways, networks and genes associated with response to PG-11047 suggest that response may be influenced by interferon signalling and differential inhibition of aspects of motility and epithelial to mesenchymal transition.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama , Espermina/análogos & derivados , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Espermina/farmacologia
16.
Cancer Res ; 69(19): 7826-34, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19789341

RESUMO

Inherent cancer phenotypes that are independent of fluctuating cross-talk with the surrounding tissue matrix are highly desirable candidates for targeting tumor cells. Our novel study design uses epithelial cell lines derived from low versus high histologic grade primary breast cancer to effectively diminish the breadth of transient variability generated within the tumor microenvironment of the host, revealing a "paracrine-independent expression of grade-associated" (PEGA) gene signature. PEGA members extended beyond "proliferation-driven" signatures commonly associated with aggressive, high-grade breast cancer. The calcium-binding protein S100P was prominent among PEGA genes overexpressed in high-grade tumors. A three-member fingerprint of S100P-correlated genes, consisting of GPRC5A, FXYD3, and PYCARD, conferred poor outcome in multiple breast cancer data sets, irrespective of estrogen receptor status but dependent on tumor size (P < 0.01). S100P silencing markedly diminished coregulated gene transcripts and reversed aggressive tumor behavior. Exposure to pathway-implicated agents, including the calmodulin inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, phenothiazine, and chlorpromazine, resulted in rapid apoptotic cell death in high-grade tumor cells resistant to the chemotherapeutic drug cisplatin. This is the first comprehensive study describing molecular phenotypes intimately associated with histologic grade whose expression remains relatively fixed despite an unavoidably changing environment to which tumor cells are invariably exposed.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Adulto , Idoso , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/genética , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Células Tumorais Cultivadas
17.
Cancer Res ; 69(19): 7557-68, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19773443

RESUMO

Normal human epithelial cells in culture have generally shown a limited proliferative potential of approximately 10 to 40 population doublings before encountering a stress-associated senescence barrier (stasis) associated with elevated levels of cyclin-dependent kinase inhibitors p16 and/or p21. We now show that simple changes in medium composition can expand the proliferative potential of human mammary epithelial cells (HMEC) initiated as primary cultures to 50 to 60 population doublings followed by p16-positive, senescence-associated beta-galactosidase-positive stasis. We compared the properties of growing and senescent pre-stasis HMEC with growing and senescent post-selection HMEC, that is, cells grown in a serum-free medium that overcame stasis via silencing of p16 expression and that display senescence associated with telomere dysfunction. Cultured pre-stasis populations contained cells expressing markers associated with luminal and myoepithelial HMEC lineages in vivo in contrast to the basal-like phenotype of the post-selection HMEC. Gene transcript and protein expression, DNA damage-associated markers, mean telomere restriction fragment length, and genomic stability differed significantly between HMEC populations at the stasis versus telomere dysfunction senescence barriers. Senescent isogenic fibroblasts showed greater similarity to HMEC at stasis than at telomere dysfunction, although their gene transcript profile was distinct from HMEC at both senescence barriers. These studies support our model of the senescence barriers encountered by cultured HMEC in which the first barrier, stasis, is retinoblastoma-mediated and independent of telomere length, whereas a second barrier (agonescence or crisis) results from telomere attrition leading to telomere dysfunction. Additionally, the ability to maintain long-term growth of genomically stable multilineage pre-stasis HMEC populations can greatly enhance experimentation with normal HMEC.


Assuntos
Glândulas Mamárias Humanas/ultraestrutura , Telômero/metabolismo , Adolescente , Adulto , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/fisiologia , Células Cultivadas , Meios de Cultura , Dano ao DNA , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Expressão Gênica , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/metabolismo , Ocitocina/farmacologia , Biossíntese de Proteínas , Telômero/genética , Transcrição Gênica , Adulto Jovem
18.
Cancer Res ; 69(2): 565-72, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19147570

RESUMO

Specific inhibitors of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK) have been developed that efficiently inhibit the oncogenic RAF-MEK-ERK pathway. We used a systems-based approach to identify breast cancer subtypes particularly susceptible to MEK inhibitors and to understand molecular mechanisms conferring resistance to such compounds. Basal-type breast cancer cells were found to be particularly susceptible to growth inhibition by small-molecule MEK inhibitors. Activation of the phosphatidylinositol 3-kinase (PI3K) pathway in response to MEK inhibition through a negative MEK-epidermal growth factor receptor-PI3K feedback loop was found to limit efficacy. Interruption of this feedback mechanism by targeting MEK and PI3K produced synergistic effects, including induction of apoptosis and, in some cell lines, cell cycle arrest and protection from apoptosis induced by proapoptotic agents. These findings enhance our understanding of the interconnectivity of oncogenic signal transduction circuits and have implications for the design of future clinical trials of MEK inhibitors in breast cancer by guiding patient selection and suggesting rational combination therapies.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Neoplasias da Mama/patologia , Camptotecina/farmacologia , Linhagem Celular Tumoral , Ciclina D1/antagonistas & inibidores , Ciclina D1/metabolismo , Sinergismo Farmacológico , Receptores ErbB/metabolismo , Retroalimentação Fisiológica , Fase G1/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
19.
Neuro Oncol ; 11(5): 477-87, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19139420

RESUMO

Development of model systems that recapitulate the molecular heterogeneity observed among glioblastoma multiforme (GBM) tumors will expedite the testing of targeted molecular therapeutic strategies for GBM treatment. In this study, we profiled DNA copy number and mRNA expression in 21 independent GBM tumor lines maintained as subcutaneous xenografts (GBMX), and compared GBMX molecular signatures to those observed in GBM clinical specimens derived from the Cancer Genome Atlas (TCGA). The predominant copy number signature in both tumor groups was defined by chromosome-7 gain/chromosome-10 loss, a poor-prognosis genetic signature. We also observed, at frequencies similar to that detected in TCGA GBM tumors, genomic amplification and overexpression of known GBM oncogenes, such as EGFR, MDM2, CDK6, and MYCN, and novel genes, including NUP107, SLC35E3, MMP1, MMP13, and DDX1. The transcriptional signature of GBMX tumors, which was stable over multiple subcutaneous passages, was defined by overexpression of genes involved in M phase, DNA replication, and chromosome organization (MRC) and was highly similar to the poor-prognosis mitosis and cell-cycle module (MCM) in GBM. Assessment of gene expression in TCGA-derived GBMs revealed overexpression of MRC cancer genes AURKB, BIRC5, CCNB1, CCNB2, CDC2, CDK2, and FOXM1, which form a transcriptional network important for G2/M progression and/or checkpoint activation. Our study supports propagation of GBM tumors as subcutaneous xenografts as a useful approach for sustaining key molecular characteristics of patient tumors, and highlights therapeutic opportunities conferred by this GBMX tumor panel for testing targeted therapeutic strategies for GBM treatment.


Assuntos
Neoplasias Encefálicas/genética , Dosagem de Genes , Glioblastoma/genética , RNA Mensageiro/análise , Animais , Proliferação de Células , Amplificação de Genes , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Transcrição Gênica , Transplante Heterólogo
20.
Cancer Cell ; 10(6): 529-41, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17157792

RESUMO

This study explores the roles of genome copy number abnormalities (CNAs) in breast cancer pathophysiology by identifying associations between recurrent CNAs, gene expression, and clinical outcome in a set of aggressively treated early-stage breast tumors. It shows that the recurrent CNAs differ between tumor subtypes defined by expression pattern and that stratification of patients according to outcome can be improved by measuring both expression and copy number, especially high-level amplification. Sixty-six genes deregulated by the high-level amplifications are potential therapeutic targets. Nine of these (FGFR1, IKBKB, ERBB2, PROCC, ADAM9, FNTA, ACACA, PNMT, and NR1D1) are considered druggable. Low-level CNAs appear to contribute to cancer progression by altering RNA and cellular metabolism.


Assuntos
Neoplasias da Mama/genética , Genômica , Transcrição Gênica , Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Aberrações Cromossômicas , Feminino , Amplificação de Genes , Dosagem de Genes , Perfilação da Expressão Gênica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA