Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Transl Sci ; 16(6): 987-1001, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36967488

RESUMO

The objective of the current study was to identify potential drug-drug interactions (DDIs) with the drug candidate fb-PMT, a novel anticancer thyrointegrin αvß3 antagonist. This was accomplished by using several in vitro assays to study interactions of fb-PMT with both cytochrome P450 (CYP) enzymes and drug transporters, two common mechanisms leading to adverse drug effects. In vitro experiments showed that fb-PMT exhibited weak reversible inhibition of CYP2C19 and CYP3A4. In addition, fb-PMT did not show time-dependent inhibition with any of the seven CYP isoforms tested, including 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4. Human liver microsomal incubations demonstrated that fb-PMT is stable. Potential transporter-mediated DDIs with fb-PMT were assessed with two ATP binding cassette (ABC) family transporters (P-glycoprotein and breast cancer resistance protein) using Caco2 cells and seven solute carrier family (SLC) transporters (organic cation transporter OCT2, organic anion transporters OAT1 and OAT3, organic anion transporter peptides OATP1B1 and OATP1B3, and the multidrug and toxic extrusion proteins MATE1 and MATE2-K using transfected HEK293 cells). Fb-PMT was not a substrate for any of the nine transporters tested in this study, nor did it inhibit the activity of seven of the transporters tested. However, fb-PMT inhibited the uptake of rosuvastatin by both OATP1B1 and OATP1B3 with half-maximal inhibitory concentrations greater than 3 and less than 10 µM. In summary, data suggest that the systemic administration of fb-PMT is unlikely to lead to DDIs through CYP enzymes or ABC and SLC transporters in humans.


Assuntos
Transportadores de Ânions Orgânicos Sódio-Independentes , Transportadores de Ânions Orgânicos , Humanos , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Células CACO-2 , Células HEK293 , Proteínas de Neoplasias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Interações Medicamentosas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Ânions Orgânicos/metabolismo
2.
Sci Rep ; 9(1): 1746, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741973

RESUMO

Hepatocellular carcinoma (HCC) is progressively increasing tumor with lack of accurate prognosis and inadequate systemic treatment approaches. Solanum sp. (such as Solanum melongena) is a folk herb which is reported to possess anticancer properties. In a continuity for our interest in pursuing the anticancer activity of compounds isolated from the fruit peels of Solanum melongena, the HPLC profiling and ESI-MS assessment for the methanolic extract evidenced the presence of bioactive glycoalkaloids (solasonine, solasodine and solamargine). These glycoalkaloids were isolated, purified and proved to possess in vitro cytotoxicity against human liver cancer cell lines (Huh7 and HepG2). Herein, we investigated the potential mechanism of action of these compounds using DNA content flow-cytometry and apoptosis/necrosis differential anaylsis using annexin-V/FITC staining. Solasonine, solasodine and solamargine inducd significant antiproliferative effect against liver cancer cells (Huh7 and HepG2) which was attributed to cell cycle arrest at S-phase. Solamargine, solasodine and solasonine induced significant apoptosis in Huh7 cells. Only solamargine-induced cell cycle arrest, was reflected as apoptotic cell killing effect against HepG2 cells. In conclusion, glycoalkaloids derived from Solanum melongena and particularly, solamargine are promising antiproliferative agents with potential anticancer effects.


Assuntos
Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Frutas/química , Extratos Vegetais/farmacologia , Solanum melongena/química , Alcaloides/química , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Citometria de Fluxo , Células Hep G2 , Humanos , Neoplasias Hepáticas , Necrose , Extratos Vegetais/química , Alcaloides de Solanáceas
3.
Mar Drugs ; 15(7)2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28677625

RESUMO

Sarcophyton sp. soft corals are rich in cembranoid diterpenes, which represent the main chemical defense of corals against their natural predators in addition to their myriad biological effects in humans. Quantitative NMR (qNMR) was applied for assessing the diterpene variation in 16 soft coral specimens in the context of their genotype, origin, and growing habitat. qNMR revealed high diterpene levels in Sarcophyton sp. compared to Sinularia and Lobophyton, with (ent)sarcophines as major components (17-100 µg/mg) of the coral tissues. Multivariate data analysis was employed to classify samples based on the quantified level of diterpenes, and compared to the untargeted NMR approach. Results revealed that qNMR provided a stronger classification model of Sarcophyton sp. than untargeted NMR fingerprinting. Additionally, cytotoxicity of soft coral crude extracts was assessed against androgen-dependent prostate cancer cell lines (PC3) and androgen-independent colon cancer cell lines (HT-29), with IC50 values ranging from 10-60 µg/mL. No obvious correlation between the extracts' IC50 values and their diterpene levels was found using either Spearman or Pearson correlations. This suggests that this type of bioactivity may not be easily predicted by NMR metabolomics in soft corals, or is not strongly correlated to measured diterpene levels.


Assuntos
Antozoários/química , Antineoplásicos/farmacologia , Diterpenos/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Diterpenos/química , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Análise Multivariada
4.
Toxicol Sci ; 159(1): 266-276, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28666384

RESUMO

The diverse community of microbes present in the human gut has emerged as an important factor for cancer risk, potentially by altering exposure to chemical carcinogens. In the present study, human gut bacteria were tested for their capacity to transform the carcinogenic heterocyclic amine 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MelQx). Eubacterium hallii, Lactobacillus reuteri, and Lactobacillus rossiae were able to convert MelQx to a new microbial metabolite characterized on the basis of high-resolution mass spectrometry and NMR as 9-hydroxyl-2,7-dimethyl-7,9,10,11-tetrahydropyrimido[2',1':2,3]imidazo[4,5-f]quinoxaline (MelQx-M1), resulting from conjugation with activated glycerol. Acrolein derived from the decomposition of 3-hydroxypropionaldehyde, which is the product of bacterial glycerol/diol dehydratase activity, was identified as the active compound responsible for the formation of MelQx-M1. A complex human gut microbial community obtained from invitro continuous intestinal fermentation was found to also transform MelQx to MelQx-M1. MelQx-M1 had slightly reduced cytotoxic potency toward human colon epithelial cells invitro, and diminished mutagenic potential toward bacteria after metabolic activation. As bacterially derived acrolein also transformed 2 other HCAs, namely 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and 2-amino-3-methylimidazo[4,5-f]quinoline, these results generalize the capacity of gut microbiota to detoxify HCAs in the gut, potentially modulating cancer risk.


Assuntos
Carcinógenos/toxicidade , Microbioma Gastrointestinal , Mutagênicos/toxicidade , Quinoxalinas/toxicidade , Células 3T3 , Animais , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Análise Espectral/métodos
5.
Food Funct ; 7(2): 1077-86, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26781334

RESUMO

Date palm fruit (Phoenix dactylifera) is not only one of the most economically significant plants in the Middle East, but also valued for its nutritional impact, and for which development of analytical methods is ongoing to help distinguish its many cultivars. This study attempts to characterize the primary and secondary metabolite profiles of 18 date cultivars from Saudi Arabia. A total of 44 metabolites extracted from the fruit peel were evaluated in a UPLC-qTOF-MS based metabolomics analysis including flavonoids, phenolic acids and fatty acids. The predominant flavones were glycosides of luteolin and chrysoeriol, as well as quercetin conjugates, whereas caffeoyl shikimic acid was the main hydroxycinnamic acid conjugate. GC-MS was further utilized to identify the primary metabolites in fruits (i.e. sugars) with glucose and fructose accounting for up to 95% of TIC among most cultivars. PCA and OPLS analyses revealed that flavone versus flavonol distribution in fruit were the main contributors for cultivar segregation. The antioxidant activity of date fruit samples was correlated with their total phenolics as determined by DPPH and CUPRAC assays. Dkheni Saudi and Shalabi Madina cultivars, appearing as the most distant in clustering analyses exhibited the strongest antioxidant effect suggesting that multivariate data analysis could help determine which date cultivars ought to be prioritized for future agricultural development.


Assuntos
Antioxidantes/análise , Produtos Agrícolas/química , Frutas/química , Metaboloma , Phoeniceae/química , Ácidos Cumáricos/análise , Flavonas/análise , Flavonoides/análise , Cromatografia Gasosa-Espectrometria de Massas , Glicosídeos/análise , Hidroxibenzoatos/análise , Luteolina/análise , Análise Multivariada , Quercetina/análise , Arábia Saudita , Ácido Chiquímico/análogos & derivados , Ácido Chiquímico/análise
6.
Environ Microbiol Rep ; 8(2): 201-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26711372

RESUMO

2-Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) is the most abundant food-derived heterocyclic aromatic amine in well-cooked meats and may contribute to the recognized carcinogenicity of processed meats. In this study, a panel of human gut microbes was tested for their ability to convert PhIP to a conjugate PhIP-M1. Eubacterium hallii was newly identified to catalyse the conversion of PhIP to PhIP-M1 with high efficiency. The reaction was shown to involve the metabolism of glycerol to 3-hydroxypropionaldehyde as a key pathway. The proficiency of E. hallii in transforming PhIP in the presence of a complex intestinal microbiota was confirmed using batch fermentations inoculated with effluents from a continuous intestinal fermentation model mimicking human proximal and distal colon microbiota. In batch fermentations inoculated with proximal colon microbiota, PhIP-M1 transformation corresponded to an up to 300-fold increase of E. hallii. In contrast, PhIP transformation of distal colon microbiota was low but increased by 120-fold after supplementation with E. hallii. These findings indicate for the first time the relevance of the abundant commensal strict anaerobe E. hallii in the transformation of a dietary carcinogen that could contribute to its detoxification in the human colon.


Assuntos
Carcinógenos/metabolismo , Eubacterium/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Imidazóis/metabolismo , Microbiota , Anaerobiose , Biotransformação , Fermentação , Gliceraldeído/análogos & derivados , Gliceraldeído/metabolismo , Glicerol/metabolismo , Humanos , Modelos Biológicos , Propano/metabolismo
7.
Chem Res Toxicol ; 24(2): 217-28, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21250671

RESUMO

Some biologically active chemicals are relatively stable in the extracellular environment but, upon entering the cell, undergo biotransformation into reactive intermediates that covalently modify DNA. The diverse chemical reactions involved in the bioactivation of DNA-damaging agents are both fundamentally interesting and of practical importance in medicinal chemistry and toxicology. The work described here examines the bioactivation of α-haloacrolyl-containing molecules. The α-haloacrolyl moiety is found in a variety of cytotoxic natural products including clionastatin B, bromovulone III, discorahabdins A, B, and C, and trichodenone C, in mutagens such as 2-bromoacrolein and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), and in the anticancer drug candidates brostallicin and PNU-151807. Using α-bromo-2-cyclopentenone (1) as a model compound, the activation of α-haloacrolyl-containing molecules by biological thiols was explored. The results indicate that both low molecular weight and peptide thiols readily undergo conjugate addition to 1. The resulting products are consistent with a mechanism in which initial addition of thiols to 1 is followed by intramolecular displacement of bromide to yield a DNA-alkylating episulfonium ion intermediate. The reaction of thiol-activated 1 with DNA produces labile lesions at deoxyguanosine residues. The sequence specificity and salt dependence of this process is consistent with involvement of an episulfonium ion intermediate. The alkylated guanine residue resulting from the thiol-triggered reaction of 1 with duplex DNA was characterized using mass spectrometry. The results provide new insight regarding the mechanisms by which thiols can bioactivate small molecules and offer a more complete understanding of the molecular mechanisms underlying the biological activity of cytotoxic, mutagenic, and medicinal compounds containing the α-haloacrolyl group.


Assuntos
Alquilantes/toxicidade , Compostos de Bromo/toxicidade , Ciclopentanos/toxicidade , Dano ao DNA , Compostos de Sulfidrila/metabolismo , Alquilação , Linhagem Celular , Cisteína/metabolismo , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Mercaptoetanol/metabolismo , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA