Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(15): 8529-8546, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35904807

RESUMO

Staphylococcus aureus, a human opportunist pathogen, adjusts its metabolism to cope with iron deprivation within the host. We investigated the potential role of small non-coding RNAs (sRNAs) in dictating this process. A single sRNA, named here IsrR, emerged from a competition assay with tagged-mutant libraries as being required during iron starvation. IsrR is iron-repressed and predicted to target mRNAs expressing iron-containing enzymes. Among them, we demonstrated that IsrR down-regulates the translation of mRNAs of enzymes that catalyze anaerobic nitrate respiration. The IsrR sequence reveals three single-stranded C-rich regions (CRRs). Mutational and structural analysis indicated a differential contribution of these CRRs according to targets. We also report that IsrR is required for full lethality of S. aureus in a mouse septicemia model, underscoring its role as a major contributor to the iron-sparing response for bacterial survival during infection. IsrR is conserved among staphylococci, but it is not ortholog to the proteobacterial sRNA RyhB, nor to other characterized sRNAs down-regulating mRNAs of iron-containing enzymes. Remarkably, these distinct sRNAs regulate common targets, illustrating that RNA-based regulation provides optimal evolutionary solutions to improve bacterial fitness when iron is scarce.


Assuntos
RNA Bacteriano , Pequeno RNA não Traduzido , Animais , Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Ferro/metabolismo , Camundongos , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Staphylococcus/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
2.
Methods ; 143: 4-11, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29709561

RESUMO

Selective RNA extractions are required when studying bacterial gene expression within complex mixtures of pathogens and human cells, during adhesion, internalization and survival within the host. New technologies should be developed and implemented to enrich the amount of bacterial RNAs since the majority of RNAs are from the eukaryotic host cells, requiring high read depth coverage to capture the bacterial transcriptomes in dual-RNAseq studies. This will improve our understanding about bacterial adaptation to the host cell defenses, and about how they will adapt to an intracellular life. Here we present an RNA extraction protocol to selectively enrich the lowest bacterial RNA fraction from a mixture of human and bacterial cells, using zirconium beads, with minimal RNA degradation. Zirconium beads have higher capacity to extract bacterial RNAs than glass beads after pathogen internalization. We optimized the beads size and composition for an optimal bacterial lysis and RNA extraction. The protocol was validated on two human cell lines, differentiated macrophages and osteoblasts, with either Gram-positive (Staphylococcus aureus) or -negative (Salmonella typhimurium) bacteria. Relative to other published protocols, yield of total RNA recovery was significantly improved, while host cell infection was performed with a lower bacterial inoculum. Within the host, bacterial RNA recovery yields were about six-fold lower than an RNA extraction from pure bacteria, but the quality of the RNA recovered was essentially similar. Bacterial RNA recovery was more efficient for S. aureus than for S. typhimurium, probably due to their higher protection by the Gram-positive cell walls during the early step of eukaryotic cell lysis. These purified bacterial RNAs allow subsequent genes expression studies in the course of host cell-bacteria interactions.


Assuntos
Bioensaio/métodos , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/isolamento & purificação , Salmonella typhimurium/genética , Staphylococcus aureus/genética , Bioensaio/instrumentação , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular , Interações Hospedeiro-Patógeno/genética , Humanos , Macrófagos , Osteoblastos , RNA Bacteriano/genética , Zircônio/química
3.
Nat Cell Biol ; 19(11): 1348-1357, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28991221

RESUMO

Competition among RNAs to bind miRNA is proposed to influence biological systems. However, the role of this competition in disease onset is unclear. Here, we report that TYRP1 mRNA, in addition to encoding tyrosinase-related protein 1 (TYRP1), indirectly promotes cell proliferation by sequestering miR-16 on non-canonical miRNA response elements. Consequently, the sequestered miR-16 is no longer able to repress its mRNA targets, such as RAB17, which is involved in melanoma cell proliferation and tumour growth. Restoration of miR-16 tumour-suppressor function can be achieved in vitro by silencing TYRP1 or increasing miR-16 expression. Importantly, TYRP1-dependent miR-16 sequestration can also be overcome in vivo by using small oligonucleotides that mask miR-16-binding sites on TYRP1 mRNA. Together, our findings assign a pathogenic non-coding function to TYRP1 mRNA and highlight miRNA displacement as a promising targeted therapeutic approach for melanoma.


Assuntos
Proliferação de Células/genética , Melanoma/genética , Melanoma/patologia , Glicoproteínas de Membrana/genética , Oxirredutases/genética , RNA Mensageiro/genética , Animais , Sítios de Ligação/genética , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , MicroRNAs/genética
4.
Sci Rep ; 7(1): 4565, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676719

RESUMO

The human pathogen Staphylococcus aureus expresses a set of transcriptional factors and small RNAs (sRNAs) to adapt to environmental variations. Recent harmonization of staphylococcal sRNA data allowed us to search for novel sRNAs using DETR'PROK, a computational pipeline for identifying sRNA in prokaryotes. We performed RNA-Seq on Newman strain and identified a set of 48 sRNA candidates. To avoid bioinformatic artefacts, we applied a series of cut-offs and tested experimentally each selected intergenic region. This narrowed the field to 24 expressed sRNAs, of which 21 were new and designated with Srn identifiers. Further examination of these loci revealed that one exhibited an unusual condensed sRNA cluster of about 650 nucleotides. We determined the transcriptional start sites within this region and demonstrated the presence of three contiguous sRNA genes (srn_9342, srn_9344 and srn_9345) expressed from the positive strand, and two others (srn_9343 and srn_9346) transcribed from the opposite one. Using comparative genomics, we showed that genetic organization of the srn_9342-9346 locus is specific to Newman and that its expression is growth-phase dependent and subjected to nutrient deprivation and oxidative stress. Finally, we demonstrated that srn_9343 encodes a secreted peptide that could belong to a novel S. aureus toxin-antitoxin system.


Assuntos
Família Multigênica , Peptídeos/genética , RNA Antissenso/genética , Pequeno RNA não Traduzido/genética , Staphylococcus aureus/genética , Sequência de Aminoácidos , Biologia Computacional/métodos , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Biossíntese Peptídica , Peptídeos/química , Interferência de RNA , RNA Bacteriano , Sítio de Iniciação de Transcrição
5.
Methods ; 117: 59-66, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27729294

RESUMO

Polysomes are macromolecular complexes made up of multiple ribosomes simultaneously translating a single mRNA into polypeptide chains. Together, the cellular mRNAs translated in this way are referred to 'translatome.' Translation determines a cell's overall gene expression profile. Studying translatome leads to a better understanding of the translational machinery and of its complex regulatory pathways. Given its fundamental role in cell homeostasis and division, bacterial translation is an important target for antibiotics. However, there are no detailed protocols for polysome purification from Staphylococcus aureus, the human pathogen responsible for the majority of multi-drug resistance issues. We therefore developed methods for the isolation of active polysomes, ribosomes, and ribosomal subunits, examining the purity and quality of each fraction and monitoring polysomal activity during protein synthesis. These steps are mandatory for the use of purified S. aureus polysomes and ribosomes for structural studies or for genome-scale analysis of most translated mRNAs.


Assuntos
Fracionamento Celular/métodos , Polirribossomos/química , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/química , Staphylococcus aureus/genética , Eletroforese em Gel de Ágar , Microscopia Eletrônica , Polirribossomos/ultraestrutura , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura , Staphylococcus aureus/metabolismo
6.
J Biol Chem ; 287(52): 43454-63, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23129767

RESUMO

We report a functional type I toxin-antitoxin (TA) module expressed by a human pathogen, Staphylococcus aureus. TA systems consist of stable toxins and labile antitoxins encoded within small genetic modules widespread in eubacteria and archaea. TA genes provide stress adaptation and protection against DNA loss or invasion. The genes encoding the SprA1 toxic peptide (PepA1) and the SprA1(AS) RNA antitoxin are within a pathogenicity island on opposite strands and possess a 3' overlap. To prevent peptide toxicity during S. aureus growth, PepA1 expression from stable (half-life > 3 h) SprA1 is repressed by elevated amounts of unstable (half-life = ∼10 mn) SprA1(AS). In vivo, PepA1 localizes at the bacterial membrane and triggers S. aureus death. Based on NMR and CD data, its solution structure was solved and is a long bent, interrupted helix. Molecular dynamics simulations indicate that PepA1 compaction and helical content fluctuate in accordance with its cytoplasm or membrane location. When inserted into the S. aureus membrane, the PepA1 conformation switches to a ∼7-nm-long continuous helix, presumably forming pores to alter membrane integrity. PepA1 expression is induced upon acidic and oxidative stresses by reducing SprA1(AS) levels. As an altruistic behavior during infection, some cells may induce the expression of that toxin that would facilitate departure from the host immune cells for spreading.


Assuntos
Membrana Celular , Proteínas de Membrana , Estresse Oxidativo/fisiologia , Peptídeos , Staphylococcus aureus , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Dicroísmo Circular , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
7.
Nat Struct Mol Biol ; 19(1): 105-12, 2011 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-22198463

RESUMO

Antisense RNAs (asRNAs) pair to RNAs expressed from the complementary strand, and their functions are thought to depend on nucleotide overlap with genes on the opposite strand. There is little information on the roles and mechanisms of asRNAs. We show that a cis asRNA acts in trans, using a domain outside its target complementary sequence. SprA1 small regulatory RNA (sRNA) and SprA1(AS) asRNA are concomitantly expressed in S. aureus. SprA1(AS) forms a complex with SprA1, preventing translation of the SprA1-encoded open reading frame by occluding translation initiation signals through pairing interactions. The SprA1 peptide sequence is within two RNA pseudoknots. SprA1(AS) represses production of the SprA1-encoded cytolytic peptide in trans, as its overlapping region is dispensable for regulation. These findings demonstrate that sometimes asRNA functional domains are not their gene-target complementary sequences, suggesting there is a need for mechanistic re-evaluation of asRNAs expressed in prokaryotes and eukaryotes.


Assuntos
Peptídeos/genética , Biossíntese de Proteínas , RNA Antissenso/genética , Staphylococcus aureus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Sequência de Bases , Northern Blotting , Western Blotting , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Hemólise/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Peptídeos/metabolismo , Peptídeos/farmacologia , RNA Antissenso/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Staphylococcus aureus/metabolismo
8.
RNA ; 16(2): 299-306, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20038631

RESUMO

In eubacteria, translation of defective messenger RNAs (mRNAs) produces truncated polypeptides that stall on the ribosome. A quality control mechanism referred to as trans-translation is performed by transfer-messenger RNA (tmRNA), a specialized RNA acting as both a tRNA and an mRNA, associated with small protein B (SmpB). So far, a clear view of the structural movements of both the protein and RNA necessary to perform accommodation is still lacking. By using a construct containing the tRNA-like domain as well as the extended helix H2 of tmRNA, we present a cryo-electron microscopy study of the process of accommodation. The structure suggests how tmRNA and SmpB move into the ribosome decoding site after the release of EF-Tu.GDP. While two SmpB molecules are bound per ribosome in a preaccommodated state, our results show that during accommodation the SmpB protein interacting with the small subunit decoding site stays in place while the one interacting with the large subunit moves away. Relative to canonical translation, an additional movement is observed due to the rotation of H2. This suggests that the larger movement required to resume translation on a tmRNA internal open reading frame starts during accommodation.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Imageamento Tridimensional , Substâncias Macromoleculares , Modelos Moleculares , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Conformação Proteica , RNA Bacteriano/química , RNA Bacteriano/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Thermus thermophilus/ultraestrutura
9.
Med Sci (Paris) ; 23(6-7): 633-9, 2007.
Artigo em Francês | MEDLINE | ID: mdl-17631839

RESUMO

Protein synthesis is an efficient and vital mechanism mediated by the ribosomes. In all living organisms, it allows an accurate correspondence between the genetic information and the newly synthesized polypeptides. The process of translation needs accurate quality-control systems to ensure the correct readout of the genetic data at the cellular level. Among them, bacteria did develop a specific mechanism referred to as "trans-translation", ensuring the recycling of stalled translating ribosomes and the degradation of incomplete nascent proteins when incomplete messenger RNAs (mRNAs) are translated. tmRNA (transfer messenger RNA) and SmpB (small protein B) are the main components of that process. Recent biochemical, genetic and structural data provide insights on how the tmRNA-SmpB complex accomplishes its duty, allowing a deeper understanding of the intricate links between trans-translation, bacterial survival and virulence.


Assuntos
Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Biossíntese de Proteínas , Ribossomos/fisiologia , Proteínas de Bactérias/genética , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética
10.
Nucleic Acids Res ; 35(7): 2368-76, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17392345

RESUMO

When the bacterial ribosome stalls on a truncated mRNA, transfer-messenger RNA (tmRNA) acts initially as a transfer RNA (tRNA) and then as a messenger RNA (mRNA) to rescue the ribosome and add a peptide tag to the nascent polypeptide that targets it for degradation. Ribosomal protein S1 binds tmRNA but its functional role in this process has remained elusive. In this report, we demonstrate that, in vitro, S1 is dispensable for the tRNA-like role of tmRNA but is essential for its mRNA function. Increasing or decreasing the amount of protein S1 in vivo reduces the overall amount of trans-translated proteins. Also, a truncated S1 protein impaired for ribosome binding can still trigger protein tagging, suggesting that S1 interacts with tmRNA outside the ribosome to keep it in an active state. Overall, these results demonstrate that S1 has a role in tmRNA-mediated tagging that is distinct from its role during canonical translation.


Assuntos
Biossíntese de Proteínas , RNA Bacteriano/metabolismo , Proteínas Ribossômicas/fisiologia , Códon , Escherichia coli/genética , Mutação , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/genética , Ribossomos/metabolismo
11.
J Mol Biol ; 331(2): 457-71, 2003 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-12888352

RESUMO

Transfer-messenger RNA (tmRNA, 10Sa RNA or ssrA) acts to rescue stalled bacterial ribosomes while encoding a peptide tag added trans-translationally to the nascent peptide, targeting it for proteolysis. The understanding at molecular level of this ubiquitous quality control system in eubacteria requires structural information. Here, we describe the purification and structural analysis of a functional fragment of both Aquifex aeolicus and Escherichia coli tmRNA, recapitulating their tRNA-like domain, which were expressed in vivo from synthetic genes. Both recombinant RNA are correctly processed at both 5' and 3' ends and are produced in quantities suitable for structural analysis by NMR and/or X-ray crystallography. The sequence and solution structure of the tRNA-like domains were analysed by various methods including structural mapping with chemical and enzymatic probes and 2D NMR spectroscopy. The minimalist RNAs contain two post-transcriptional base modifications, 5-methyluridine and pseudouridine, as the full-length tmRNA. Both RNAs fold into three stems, a D-analogue, a T-loop and a GAAA tetra-loop. 2D NMR analysis of the imino proton resonances of both RNAs allowed the assignment of the three stems and of a number of tertiary interactions. It shows the existence of interactions between the TPsiC-loop and the D-analogue, exhibiting a number of similarities and also differences with the canonical tRNA fold, indicating that RNA tertiary interactions can be modulated according to the sequence and secondary structure contexts. Furthermore, the E.coli minimalist RNA is aminoacylatable with alanine with a catalytic efficiency an order of magnitude higher than that for full-length tmRNA.


Assuntos
Bactérias/metabolismo , Escherichia coli/metabolismo , RNA Mensageiro/química , RNA de Transferência/química , Alanina/química , Sequência de Bases , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas Recombinantes/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA