Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000554

RESUMO

Triple-negative breast cancer (TNBC) accounts for 15% of all breast cancers and is highly aggressive. Despite an initial positive response to chemotherapy, most patients experience rapid disease progression leading to relapse and metastasis. This is attributed to the presence of breast cancer stem cells (BCSCs) within the tumor, which are characterized by self-renewal, pluripotency, and resistance mechanisms. Targeting BCSCs has become critical as conventional therapies fail to eradicate them due to a lack of specific targets. Curcumin, a polyphenol derived from turmeric (Curcuma longa), exhibits anticancer effects against breast cancer cells and BCSCs. The use of curcumin derivatives has been suggested as an approach to overcome the bioavailability and solubility problems of curcumin in humans, thereby increasing its anticancer effects. The aim of this study was to evaluate the cellular and molecular effects of six synthetic compounds derived from the natural polyphenol epigallocatechin gallate (EGCG) (TL1, TL2) and curcumin derivatives (TL3, TL4, TL5, and TL6) on a TNBC mesenchymal stem-like cell line. The activity of the compounds against BCSCs was also determined by a mammosphere inhibition assay and studying different BCSC markers by Western blotting. Finally, a drug combination assay was performed with the most promising compounds to evaluate their potential synergistic effects with the chemotherapeutic agents doxorubicin, cisplatin, and paclitaxel. The results showed that compounds exhibited specific cytotoxicity against the TNBC cell line and BCSCs. Interestingly, the combination of the curcumin derivative TL3 with doxorubicin and cisplatin displayed a synergistic effect in TNBC cells.


Assuntos
Curcumina , Células-Tronco Neoplásicas , Polifenóis , Neoplasias de Mama Triplo Negativas , Humanos , Curcumina/farmacologia , Curcumina/análogos & derivados , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Polifenóis/farmacologia , Polifenóis/química , Linhagem Celular Tumoral , Feminino , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química
2.
Plant Cell Rep ; 43(8): 190, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976088

RESUMO

KEY MESSAGE: New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.


Assuntos
Regulação da Expressão Gênica de Plantas , Peptídeos , Doenças das Plantas , Prunus dulcis , Xylella , Xylella/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Prunus dulcis/microbiologia , Peptídeos/farmacologia , Peptídeos/metabolismo , Ácido Salicílico/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença , Folhas de Planta/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/genética
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167094, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428683

RESUMO

Muscle wasting diseases, such as cancer cachexia and age-associated sarcopenia, have a profound and detrimental impact on functional independence, quality of life, and survival. Our understanding of the underlying mechanisms is currently limited, which has significantly hindered the development of targeted therapies. In this study, we explored the possibility that the streptococcal quorum sensing peptide Competence Stimulating Peptide 7 (CSP-7) might be a previously unidentified contributor to clinical muscle wasting. We found that CSP-7 selectively triggers muscle cell inflammation in vitro, specifically the release of IL-6. Furthermore, we demonstrated that CSP-7 can traverse the gastrointestinal barrier in vitro and is present in the systemic circulation in humans in vivo. Importantly, CSP-7 was associated with a muscle wasting phenotype in mice in vivo. Overall, our findings provide new mechanistic insights into the pathophysiology of muscle inflammation and wasting.


Assuntos
Caquexia , Percepção de Quorum , Humanos , Animais , Camundongos , Percepção de Quorum/fisiologia , Qualidade de Vida , Peptídeos , Inflamação , Atrofia Muscular , Músculos
4.
Appl Environ Microbiol ; 88(12): e0057422, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35638842

RESUMO

Thirty peptide conjugates were designed by combining an antimicrobial peptide (BP16, BP100, BP143, KSL-W, BP387, or BP475) at the N- or C-terminus of a plant defense elicitor peptide (flg15, BP13, Pep13, or PIP1). These conjugates were highly active in vitro against six plant-pathogenic bacteria, especially against Xanthomonas arboricola pv. pruni, Xanthomonas fragariae and Xanthomonas axonopodis pv. vesicatoria. The most active peptides were those incorporating Pep13. The order of the conjugation influenced the antibacterial activity and the hemolysis. Regarding the former, peptide conjugates incorporating the elicitor peptide flg15 or Pep13 at the C-terminus were, in general, more active against Pseudomonas syringae pv. actinidiae and P. syringae pv. syringae, whereas those bearing these elicitor peptides at the N-terminus displayed higher activity against Erwinia. amylovora and the Xanthomonas species. The best peptide conjugates displayed MIC values between 0.8 and 12.5 µM against all the bacteria tested and also had low levels of hemolysis and low phytotoxicity. Analysis of the structural and physicochemical parameters revealed that a positive charge ranging from +5 to +7 and a moderate hydrophobic moment/amphipathic character is required for an optimal biological profile. Interestingly, flg15-BP475 exhibited a dual activity, causing the upregulation of the same genes as flg15 and reducing the severity of bacterial spot in tomato plants with a similar or even higher efficacy than copper oxychloride. Characterization by nuclear magnetic resonance (NMR) of the secondary structure of flg15-BP475 showed that residues 10 to 25 fold into an α-helix. This study establishes trends to design new bifunctional peptides useful against plant diseases caused by plant-pathogenic bacteria. IMPORTANCE The consequences of plant pathogens on crop production together with the lack of effective and environmentally friendly pesticides evidence the need of new agents to control plant diseases. Antimicrobial and plant defense elicitor peptides have emerged as good candidates to tackle this problem. This study focused on combining these two types of peptides into a single conjugate with the aim to potentiate the activity of the individual fragments. Differences in the biological activity of the resulting peptide conjugates were obtained depending on their charge, amphipathicity, and hydrophobicity, as well as on the order of the conjugation of the monomers. This work provided bifunctional peptide conjugates able to inhibit several plant-pathogenic bacteria, to stimulate plant defense responses, and to reduce the severity of bacterial spot in tomato plants. Thus, this study could serve as the basis for the development of new antibacterial/plant defense elicitor peptides to control bacterial plant pathogens.


Assuntos
Erwinia amylovora , Solanum lycopersicum , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Hemólise , Peptídeos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Plantas/microbiologia , Xanthomonas
5.
Mater Today Bio ; 12: 100155, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34841239

RESUMO

There is no targeted therapy for triple negative breast cancer (TNBC), which presents an aggressive profile and poor prognosis. Recent studies noticed the feasibility of breast cancer stem cells (BCSCs), a small population responsible for tumor initiation and relapse, to become a novel target for TNBC treatments. However, new cell culture supports need to be standardized since traditional two-dimensional (2D) surfaces do not maintain the stemness state of cells. Hence, three-dimensional (3D) scaffolds represent an alternative to study in vitro cell behavior without inducing cell differentiation. In this work, electrospun polycaprolactone scaffolds were used to enrich BCSC subpopulation of MDA-MB-231 and MDA-MB-468 TNBC cells, confirmed by the upregulation of several stemness markers and the existence of an epithelial-to-mesenchymal transition within 3D culture. Moreover, 3D-cultured cells displayed a shift from MAPK to PI3K/AKT/mTOR signaling pathways, accompanied by an enhanced EGFR and HER2 activation, especially at early cell culture times. Lastly, the fatty acid synthase (FASN), a lipogenic enzyme overexpressed in several carcinomas, was found to be hyperactivated in stemness-enriched samples. Its pharmacological inhibition led to stemness diminishment, overcoming the BCSC expansion achieved in 3D culture. Therefore, FASN may represent a novel target for BCSC niche in TNBC samples.

6.
Front Microbiol ; 12: 753874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819923

RESUMO

Xylella fastidiosa is a plant pathogen that was recently introduced in Europe and is causing havoc to its agriculture. This Gram-negative bacterium invades the host xylem, multiplies, and forms biofilm occluding the vessels and killing its host. In spite of the great research effort, there is no method that effectively prevents or cures hosts from infections. The main control strategies up to now are eradication, vector control, and pathogen-free plant material. Antimicrobial peptides have arisen as promising candidates to combat this bacterium due to their broad spectrum of activity and low environmental impact. In this work, peptides previously reported in the literature and newly designed analogs were studied for its bactericidal and antibiofilm activity against X. fastidiosa. Also, their hemolytic activity and effect on tobacco leaves when infiltrated were determined. To assess the activity of peptides, the strain IVIA 5387.2 with moderate growth, able to produce biofilm and susceptible to antimicrobial peptides, was selected among six representative strains found in the Mediterranean area (DD1, CFBP 8173, Temecula, IVIA 5387.2, IVIA 5770, and IVIA 5901.2). Two interesting groups of peptides were identified with bactericidal and/or antibiofilm activity and low-moderate toxicity. The peptides 1036 and RIJK2 with dual (bactericidal-antibiofilm) activity against the pathogen and moderate toxicity stand out as the best candidates to control X. fastidiosa diseases. Nevertheless, peptides with only antibiofilm activity and low toxicity are also promising agents as they could prevent the occlusion of xylem vessels caused by the pathogen. The present work contributes to provide novel compounds with antimicrobial and antibiofilm activity that could lead to the development of new treatments against diseases caused by X. fastidiosa.

7.
Molecules ; 26(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198776

RESUMO

In this paper, peptide conjugates were designed and synthesized by incorporating the antimicrobial undecapeptide BP16 at the C- or N-terminus of the plant defense elicitor peptide flg15, leading to BP358 and BP359, respectively. The evaluation of their in vitro activity against six plant pathogenic bacteria revealed that BP358 displayed MIC values between 1.6 and 12.5 µM, being more active than flg15, BP16, BP359, and an equimolar mixture of BP16 and flg15. Moreover, BP358 was neither hemolytic nor toxic to tobacco leaves. BP358 triggered the overexpression of 6 out of the 11 plant defense-related genes tested. Interestingly, BP358 inhibited Erwinia amylovora infections in pear plants, showing slightly higher efficacy than the mixture of BP16 and flg15, and both treatments were as effective as the antibiotic kasugamycin. Thus, the bifunctional peptide conjugate BP358 is a promising agent to control fire blight and possibly other plant bacterial diseases.


Assuntos
Erwinia amylovora/crescimento & desenvolvimento , Proteínas Citotóxicas Formadoras de Poros/síntese química , Pyrus/crescimento & desenvolvimento , Erwinia amylovora/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Pyrus/microbiologia
8.
Sci Rep ; 11(1): 10723, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021199

RESUMO

Quorum sensing peptides (QSPs) are bacterial peptides produced by Gram-positive bacteria to communicate with their peers in a cell-density dependent manner. These peptides do not only act as interbacterial communication signals, but can also have effects on the host. Compelling evidence demonstrates the presence of a gut-brain axis and more specifically, the role of the gut microbiota in microglial functioning. The aim of this study is to investigate microglial activating properties of a selected QSP (PapRIV) which is produced by Bacillus cereus species. PapRIV showed in vitro activating properties of BV-2 microglia cells and was able to cross the in vitro Caco-2 cell model and reach the brain. In vivo peptide presence was also demonstrated in mouse plasma. The peptide caused induction of IL-6, TNFα and ROS expression and increased the fraction of ameboid BV-2 microglia cells in an NF-κB dependent manner. Different metabolites were identified in serum, of which the main metabolite still remained active. PapRIV is thus able to cross the gastro-intestinal tract and the blood-brain barrier and shows in vitro activating properties in BV-2 microglia cells, hereby indicating a potential role of this quorum sensing peptide in gut-brain interaction.


Assuntos
Encéfalo/metabolismo , Retroalimentação Fisiológica , Microbioma Gastrointestinal , Microglia/metabolismo , Peptídeos/metabolismo , Percepção de Quorum , Biomarcadores , Barreira Hematoencefálica/metabolismo , Meios de Cultivo Condicionados , Interações entre Hospedeiro e Microrganismos/imunologia , Mediadores da Inflamação/metabolismo , Microglia/imunologia , Transporte Proteico
9.
Colloids Surf B Biointerfaces ; 197: 111384, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33113488

RESUMO

Conjugation of cytostatic drugs to nanomaterials seeks to improve their low bioavailability and selectivity to overcome the important associated side effects. In this work, we aimed to synthesize water-soluble gold nanoparticles as transporters for synthetic cyclic peptides with a potential anticancer activity but with a limited bioavailability. The highly water-soluble nanoparticles (2.5 nm diameter gold core) are coated with a mixture of polyethylene glycol linkers, one bearing a terminal hydroxyl group for increasing dispersibility in water, and the second bearing a carboxylic acid group for peptide conjugation through amide bond formation. Peptide-functionalized particles have a 9.7 ± 1.8 nm hydrodynamic diameter and are highly water-soluble and stable in solution for at least one year. The morphology of the gold cores as well as their organic coating was studied using Transmission Electron Microscopy, showing that the attachment of a limited number of peptides per nanoparticle leads to a uneven organic coating of two different thicknesses, one of 2.0 ± 0.6 nm formed by polyethylene glycol linkers, and a second of 3.6 ± 0.5 nm which includes the peptide. GNP significantly enhance the internalization of the cyclic peptide BPC734 in cells as compared to peptide in solution, with improved uptake in cancerous HT29 cells. Cytotoxicity studies show that peptide BPC734 in solution is toxic in the micromolar range, whereas peptide-functionalized particles are toxic at nanomolar peptide concentrations and with a significantly higher toxicity for cancerous cells. All these results, besides the stability and expected passive tumor targeting, make these particles a promising option for improving the bioavailability, efficacy, and selectivity in cancer therapy.


Assuntos
Nanopartículas Metálicas , Neoplasias , Ouro , Humanos , Neoplasias/tratamento farmacológico , Peptídeos , Peptídeos Cíclicos , Água
10.
J Inorg Biochem ; 212: 111214, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32919249

RESUMO

We have synthesized a set of bombesin derivatives with the aim of exploring their tumor targeting properties to deliver metal-based chemotherapeutics into cancer cells. Peptide QRLGNQWAVGHLL-NH2 (BN3) was selected based on its high internalization in gastrin-releasing peptide receptor (GRPR)-overexpressing PC-3 cells. Three metallopeptides were prepared by incorporating the terpyridine Pt(II) complex [PtCl(cptpy)]Cl (1) (cptpy = 4'-(4-carboxyphenyl)-2,2':6,2″-terpyridine) at the N-terminus of BN3 or at the NƐ- or Nα-amino group of an additional Lys residue (1-BN3, Lys-1-BN3 and 1-Lys-BN3, respectively). 1-Lys-BN3 displayed the best cytotoxic activity (IC50: 19.2 ±â€¯1.7 µM) and similar ability to intercalate into DNA than complex 1. Moreover, the polypyridine Ru(II) complex [Ru(bpy)2)(cmbpy)](PF6)2 (2) (bpy = 2,2'-bipyridine; cmbpy = 4-methyl-2,2'-bipyridine-4'-carboxylic acid), with proven activity as photosensitizer, was coupled to BN3 leading to metallopeptide 2-Lys-BN3. Upon photoactivation, 2-Lys-BN3 displayed 2.5-fold higher cytotoxicity against PC-3 cells (IC50: 7.6 ±â€¯1.0 µM) than complex 2. To enhance the accumulation of the drugs into the cell nucleus, the nuclear localization signal (NLS) PKKKRKV was incorporated at the N-terminus of BN3. NLS-BN3 displayed higher cellular internalization along with nuclear biodistribution. Accordingly, metallopeptides 1-NLS-BN3 and 2-NLS-BN3 showed increased cytotoxicity (IC50: 12.0 ±â€¯1.1 µM and 2.3 ±â€¯1.1 µM). Interestingly, the phototoxic index of 2-NLS-BN3 was 8-fold higher than that of complex 2. Next, the selectivity towards cancer cells was explored using 1BR3.G fibroblasts. Higher selectivity indexes were obtained for 1-NLS-BN3 and 2-NLS-BN3 than for the unconjugated complexes. These results prove NLS-BN3 effective for targeted delivery of metallodrugs to GRPR-overexpressing cells and for enhancing the cytotoxic efficacy of metal-based photosensitizers.


Assuntos
Antineoplásicos/administração & dosagem , Bombesina/análogos & derivados , Núcleo Celular/efeitos dos fármacos , Complexos de Coordenação/administração & dosagem , Sistemas de Liberação de Medicamentos , Compostos de Platina/administração & dosagem , Compostos de Rutênio/administração & dosagem , Sequência de Aminoácidos , Antineoplásicos/farmacologia , Bombesina/administração & dosagem , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Microscopia de Força Atômica , Sinais de Localização Nuclear , Compostos de Platina/farmacologia , Compostos de Rutênio/farmacologia , Espectrometria de Fluorescência/métodos , Espectrometria de Massas por Ionização por Electrospray
11.
Cancers (Basel) ; 12(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438613

RESUMO

Epidermal growth factor receptor (EGFR) tyrosine kinases inhibitors (TKIs) are effective therapies for non-small cell lung cancer (NSCLC) patients whose tumors harbor an EGFR activating mutation. However, this treatment is not curative due to primary and secondary resistance such as T790M mutation in exon 20. Recently, activation of transducer and activator of transcription 3 (STAT3) in NSCLC appeared as an alternative resistance mechanism allowing cancer cells to elude the EGFR signaling. Overexpression of fatty acid synthase (FASN), a multifunctional enzyme essential for endogenous lipogenesis, has been related to resistance and the regulation of the EGFR/Jak2/STAT signaling pathways. Using EGFR mutated (EGFRm) NSCLC sensitive and EGFR TKIs' resistant models (Gefitinib Resistant, GR) we studied the role of the natural polyphenolic anti-FASN compound (-)-epigallocatechin-3-gallate (EGCG), and its derivative G28 to overcome EGFR TKIs' resistance. We show that G28's cytotoxicity is independent of TKIs' resistance mechanisms displaying synergistic effects in combination with gefitinib and osimertinib in the resistant T790M negative (T790M-) model and showing a reduction of activated EGFR and STAT3 in T790M positive (T790M+) models. Our results provide the bases for further investigation of G28 in combination with TKIs to overcome the EGFR TKI resistance in NSCLC.

12.
Molecules ; 24(6)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875891

RESUMO

Recent studies showed that Fatty Acid Synthase (FASN), a lipogenic enzyme overexpressed in several carcinomas, plays an important role in drug resistance. Furthermore, the enrichment of Breast Cancer Stem Cell (BCSC) features has been found in breast tumors that progressed after chemotherapy. Hence, we used the triple negative breast cancer (TNBC) cell line MDA-MB-231 (231) to evaluate the FASN and BCSC population role in resistance acquisition to chemotherapy. For this reason, parental cell line (231) and its derivatives resistant to doxorubicin (231DXR) and paclitaxel (231PTR) were used. The Mammosphere-Forming Assay and aldehyde dehydrogenase (ALDH) enzyme activity assay showed an increase in BCSCs in the doxorubicin-resistant model. Moreover, the expression of some transcription factors involved in epithelial-mesenchymal transition (EMT), a process that confers BCSC characteristics, was upregulated after chemotherapy treatment. FASN inhibitors C75, (-)-Epigallocatechin 3-gallate (EGCG), and its synthetic derivatives G28, G56 and G37 were used to evaluate the effect of FASN inhibition on the BCSC-enriched population in our cell lines. G28 showed a noticeable antiproliferative effect in adherent conditions and, interestingly, a high mammosphere-forming inhibition capacity in all cell models. Our preliminary results highlight the importance of studying FASN inhibitors for the treatment of TNBC patients, especially those who progress after chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Catequina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ácido Graxo Sintase Tipo I/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Antineoplásicos/química , Catequina/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estrutura Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Paclitaxel/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
13.
Peptides ; 112: 85-95, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30508634

RESUMO

Recent strong restrictions on the use of pesticides has prompted the search for safer alternatives, being antimicrobial peptides promising candidates. Herein, with the aim of identifying new agents, 15 peptides reported as plant defense elicitors, promiscuous, multifunctional or antimicrobial were selected and tested against six plant pathogenic bacteria of economic importance. Within this set, KSL-W (KKVVFWVKFK-NH2) displayed high antibacterial activity against all the tested pathogens, low hemolysis and low phytotoxicity in tobacco leaves. This peptide was taken as a lead and 49 analogues were designed and synthesized, including N-terminal deletion sequences, peptides incorporating a d-amino acid and lipopeptides. The screening of these sequences revealed that a nine amino acid length was the minimum for activity. The presence of a d-amino acid significantly decreased the hemolysis and endowed KSL-W with the capacity to induce the expression of defense-related genes in tomato plants. The incorporation of an acyl chain led to sequences with high activity against Xanthomonas strains, low hemolysis and phytotoxicity. Therefore, this study demonstrates that KSL-W constitutes an excellent candidate as new agent to control plant diseases and can be considered as a lead to develop derivatives with multifunctional properties, including antimicrobial and plant defense elicitation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Lipopeptídeos/farmacologia , Doenças das Plantas/terapia , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Lipopeptídeos/uso terapêutico , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Nicotiana/microbiologia , Nicotiana/fisiologia , Xanthomonas
14.
Food Chem Toxicol ; 123: 195-204, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30367911

RESUMO

Epigallocatechin gallate (EGCG), the main catechin of green tea, is described to have potential health benefits in several fields like oncology, neurology or cardiology. Currently, it is also under pre-clinical investigation as a potential therapeutic or preventive treatment during pregnancy against developmental adverse effects induced by toxic substances. However, the safety of EGCG during pregnancy is unclear due to its proven adverse effects on neural progenitor cells' (NPCs) migration. As lately several strategies have arisen to generate new therapeutic agents derived from EGCG, we have used the rat 'Neurosphere Assay' to characterize and compare the effects of EGCG structurally related compounds and EGCG PEGylated PLGA nanoparticles on a neurodevelopmental key event: NPCs migration. Compounds structurally-related to EGCG induce the same pattern of NPCs migration alterations (decreased migration distance, decreased formation of migration corona, chaotic orientation of cellular processes and decreased migration of neurons at higher concentrations). The potency of the compounds does not depend on the number of galloyl groups, and small structure variations can imply large potency differences. Due to their lower toxicity observed in vitro in NPCs, 4,4'-bis[(3,4,5-trihydroxybenzoyl)oxy]-1,1'-biphenyl and EGCG PEGylated PLGA nanoparticles are suggested as potential future therapeutic or preventive alternatives to EGCG during prenatal period.


Assuntos
Catequina/análogos & derivados , Nanopartículas/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Animais , Catequina/química , Catequina/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Polietilenoglicóis/química , Gravidez , Ratos
15.
PLoS One ; 13(7): e0201571, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30052685

RESUMO

A collection of 36 lipopeptides were designed from the cecropin A-melittin hybrid peptide BP100 (H-Lys-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Tyr-Leu-NH2) previously described with activity against phytopathogenic bacteria. These lipopeptides were synthesized on solid-phase and screened for their antimicrobial activity, toxicity and proteolytic stability. They incorporated a butanoyl, a hexanoyl or a lauroyl group at the N-terminus or at the side chain of a lysine residue placed at each position of the sequence. Their antimicrobial activity and hemolysis depended on the fatty acid length and its position. In particular, lipopeptides containing a butanoyl or a hexanoyl chain exhibited the best biological activity profile. In addition, we observed that the incorporation of the acyl group did not induce the overexpression of defense-related genes in tomato. Best lipopeptides were BP370, BP378, BP381, BP387 and BP389, which were highly active against all the pathogens tested (minimum inhibitory concentration of 0.8 to 12.5 µM), low hemolytic, low phytotoxic and significantly stable to protease degradation. This family of lipopeptides might be promising functional peptides useful for plant protection.


Assuntos
Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Lipopeptídeos/isolamento & purificação , Lipopeptídeos/farmacologia , Oligopeptídeos/química , Doenças das Plantas/prevenção & controle , Plantas/microbiologia , Anti-Infecciosos/química , Erwinia/efeitos dos fármacos , Erwinia/crescimento & desenvolvimento , Lipopeptídeos/síntese química , Testes de Sensibilidade Microbiana , Oligopeptídeos/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Pseudomonas/efeitos dos fármacos , Pseudomonas/crescimento & desenvolvimento , Nicotiana/efeitos dos fármacos , Nicotiana/microbiologia , Xanthomonas/efeitos dos fármacos , Xanthomonas/crescimento & desenvolvimento
16.
Molecules ; 23(5)2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751678

RESUMO

(-)-Epigallocatechin 3-gallate (EGCG) is a natural polyphenol from green tea with reported anticancer activity and capacity to inhibit the lipogenic enzyme fatty acid synthase (FASN), which is overexpressed in several human carcinomas. To improve the pharmacological profile of EGCG, we previously developed a family of EGCG derivatives and the lead compounds G28, G37 and G56 were characterized in HER2-positive breast cancer cells overexpressing FASN. Here, diesters G28, G37 and G56 and two G28 derivatives, monoesters M1 and M2, were synthesized and assessed in vitro for their cytotoxic, FASN inhibition and apoptotic activities in MDA-MB-231 triple-negative breast cancer (TNBC) cells. All compounds displayed moderate to high cytotoxicity and significantly blocked FASN activity, monoesters M1 and M2 being more potent inhibitors than diesters. Interestingly, G28, M1, and M2 also diminished FASN protein expression levels, but only monoesters M1 and M2 induced apoptosis. Our results indicate that FASN inhibition by such polyphenolic compounds could be a new strategy in TNBC treatment, and highlight the potential anticancer activities of monoesters. Thus, G28, G37, G56, and most importantly M1 and M2, are anticancer candidates (alone or in combination) to be further characterized in vitro and in vivo.


Assuntos
Antineoplásicos/síntese química , Catequina/análogos & derivados , Inibidores Enzimáticos/síntese química , Ácido Graxo Sintases/antagonistas & inibidores , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Catequina/síntese química , Catequina/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Estrutura Molecular , Neoplasias de Mama Triplo Negativas/enzimologia
17.
Inorg Chem ; 56(22): 13679-13696, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29099179

RESUMO

The synthesis and characterization of Pt(II) (1 and 2) and Ru(II) arene (3 and 4) or polypyridine (5 and 6) complexes is described. With the aim of having a functional group to form bioconjugates, one uncoordinated carboxyl group has been introduced in all complexes. Some of the complexes were selected for their potential in photodynamic therapy (PDT). The molecular structures of complexes 2 and 5, as well as that of the sodium salt of the 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine ligand (cptpy), were determined by X-ray diffraction. Different techniques were used to evaluate the binding capacity to model DNA molecules, and MTT cytotoxicity assays were performed against four cell lines. Compounds 3, 4, and 5 showed little tendency to bind to DNA and exhibited poor biological activity. Compound 2 behaves as bonded to DNA probably through a covalent interaction, although its cytotoxicity was very low. Compound 1 and possibly 6, both of which contain a cptpy ligand, were able to intercalate with DNA, but toxicity was not observed for 6. However, compound 1 was active in all cell lines tested. Clonogenic assays and apoptosis induction studies were also performed on the PC-3 line for 1. The photodynamic behavior for complexes 1, 5, and 6 indicated that their nuclease activity was enhanced after irradiation at λ = 447 nm. The cell viability was significantly reduced only in the case of 5. The different behavior in the absence or presence of light makes complex 5 a potential prodrug of interest in PDT. Molecular docking studies followed by molecular dynamics simulations for 1 and the counterpart without the carboxyl group confirmed the experimental data that pointed to an intercalation mechanism. The cytotoxicity of 1 and the potential of 5 in PDT make them good candidates for subsequent conjugation, through the carboxyl group, to "selected peptides" which could facilitate the selective vectorization of the complex toward receptors that are overexpressed in neoplastic cell lines.


Assuntos
Antineoplásicos/farmacologia , Ácidos Carboxílicos/farmacologia , Complexos de Coordenação/farmacologia , Compostos Organoplatínicos/farmacologia , Rutênio/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Apoptose/efeitos dos fármacos , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/efeitos da radiação , Linhagem Celular Tumoral , Cisplatino/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/efeitos da radiação , DNA/química , Dano ao DNA , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Substâncias Intercalantes/efeitos da radiação , Luz , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Compostos Organoplatínicos/efeitos da radiação , Plasmídeos
18.
Dalton Trans ; 45(33): 12970-82, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27095089

RESUMO

The rich chemical and structural versatility of transition metal complexes provides numerous novel paths to be pursued in the design of molecules that exert particular chemical or physicochemical effects that could operate over specific biological targets. However, the poor cell permeability of metallodrugs represents an important barrier for their therapeutic use. The conjugation between metal complexes and a functional peptide vector can be regarded as a versatile and potential strategy to improve their bioavailability and accumulation inside cells, and the site selectivity of their effect. This perspective lies in reviewing the recent advances in the design of metallopeptide conjugates for biomedical applications. Additionally, we highlight the studies where this approach has been directed towards the incorporation of redox active metal centers into living organisms for modulating the cellular redox balance, as a tool with application in anticancer therapy.


Assuntos
Complexos de Coordenação/química , Sistemas de Liberação de Medicamentos , Peptídeos/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Complexos de Coordenação/administração & dosagem , Humanos , Neoplasias/tratamento farmacológico , Peptídeos/administração & dosagem
19.
PLoS One ; 11(3): e0151639, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27008420

RESUMO

Cyclolipopeptides derived from the antimicrobial peptide c(Lys-Lys-Leu-Lys-Lys-Phe-Lys-Lys-Leu-Gln) (BPC194) were prepared on solid-phase and screened against four plant pathogens. The incorporation at Lys5 of fatty acids of 4 to 9 carbon atoms led to active cyclolipopeptides. The influence on the antimicrobial activity of the Lys residue that is derivatized was also evaluated. In general, acylation of Lys1, Lys2 or Lys5 rendered the sequences with the highest activity. Incorporation of a D-amino acid maintained the antimicrobial activity while significantly reduced the hemolysis. Replacement of Phe with a His also yielded cyclolipopeptides with low hemolytic activity. Derivatives exhibiting low phytotoxicity in tobacco leaves were also found. Interestingly, sequences with or without significant activity against phytopathogenic bacteria and fungi, but with differential hemolysis and phytotoxicity were identified. Therefore, this study represents an approach to the development of bioactive peptides with selective activity against microbial, plant and animal cell targets. These selective cyclolipopeptides are candidates useful not only to combat plant pathogens but also to be applied in other fields.


Assuntos
Aminoácidos/metabolismo , Histidina/metabolismo , Lipopeptídeos/farmacologia , Plantas/metabolismo , Animais
20.
Inorg Chem ; 54(22): 10542-58, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26503063

RESUMO

The conjugation of redox-active complexes that can function as chemical nucleases to cationic tetrapeptides is pursued in this work in order to explore the expected synergistic effect between these two elements in DNA oxidative cleavage. Coordination complexes of biologically relevant first row metal ions, such as Zn(II) or Cu(II), containing the tetradentate ligands 1,4-dimethyl-7-(2-pyridylmethyl)-1,4,7-triazacyclononane ((Me2)PyTACN) and (2S,2S')-1,1'-bis(pyrid-2-ylmethyl)-2,2'-bipyrrolidine ((S,S')-BPBP) have been linked to a cationic LKKL tetrapeptide sequence. Solid-phase synthesis of the peptide-tetradentate ligand conjugates has been developed, and the preparation and characterization of the corresponding metallotetrapeptides is described. The DNA cleavage activity of Cu and Zn metallopeptides has been evaluated and compared to their metal binding conjugates as well as to the parent complexes and ligands. Very interestingly, the oxidative Cu metallopeptides 1Cu and 2Cu show an enhanced activity compared to the parent complexes, [Cu(PyTACN)](2+) and [Cu(BPBP)](2+), respectively. Under optimized conditions, 1Cu displays an apparent pseudo first-order rate constant (kobs) of ∼0.16 min(-1) with a supercoiled DNA half-life time (t1/2) of ∼4.3 min. On the other hand, kobs for 2Cu has been found to be ∼0.11 min(-1) with t1/2 ≈ 6.4 min. Hence, these results point out that the DNA cleavage activities promoted by the metallopeptides 1Cu and 2Cu render ∼4-fold and ∼23 rate accelerations in comparison with their parent Cu complexes. Additional binding assays and mechanistic studies demonstrate that the enhanced cleavage activities are explained by the presence of the cationic LKKL tetrapeptide sequence, which induces an improved binding affinity to the DNA, thus bringing the metal ion, which is responsible for cleavage, in close proximity.


Assuntos
Compostos Aza/farmacologia , Complexos de Coordenação/farmacologia , Clivagem do DNA/efeitos dos fármacos , DNA Super-Helicoidal/metabolismo , Oligopeptídeos/farmacologia , Piridinas/farmacologia , Compostos Aza/síntese química , Compostos Aza/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre , DNA Super-Helicoidal/química , Humanos , Cinética , Ligantes , Células MCF-7 , Oligopeptídeos/síntese química , Oligopeptídeos/química , Plasmídeos , Piridinas/síntese química , Piridinas/química , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA