Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ALTEX ; 41(3): 469-484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746991

RESUMO

Microphysiological systems (MPS) are gaining broader application in the pharmaceutical industry but have primarily been leveraged in early discovery toxicology and pharmacology studies with small molecules. The adoption of MPS offers a promising avenue to reduce animal use, improve in-vitro-to-in-vivo translation of pharmacokinetics/pharmacodynamics and toxicity correlation, and provide mechanistic understanding of model species suitability. While MPS have demonstrated utility in these areas with small molecules and biologics, MPS models in cell therapy development have not been fully explored, let alone validated. Distinguishing features of MPS, including long-term viability and physiologically relevant expression of functional enzymes, receptors, and pharmacological targets make them attractive tools for nonclinical characterization. However, there is currently limited published evidence of MPS being utilized to study the disposition, metabolism, pharmacology, and toxicity profiles of cell therapies. This review provides an industry perspective on the nonclinical application of MPS on cell therapies, first with a focus on oncology applications followed by examples in regenerative medicine.


Microphysiological systems (MPS) are advanced cell models, applied in the pharmaceutical industry to characterize novel therapies. While their application in studies of small molecule ther­apies has been very successful, the use of these models to study cell therapies has been limited. Cell therapies consist of cells and are living drugs, often with complex biological mechanisms of action, which can be very challenging to study. However, MPS have several features that make them attractive for studying cell therapies, including possibilities for longer-term studies and the ability to mimic physiologically relevant biological functions. MPS can mimic complex biological systems and processes, as such, the adoption of MPS offers a promising avenue to reduce the use of animals in the characterization of novel therapies. This review provides an industry perspective on current chal­lenges and highlights opportunities for using MPS in the development of cell therapies.


Assuntos
Alternativas aos Testes com Animais , Terapia Baseada em Transplante de Células e Tecidos , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Medicina Regenerativa/métodos , Sistemas Microfisiológicos
2.
Regen Med ; 18(3): 219-227, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36852420

RESUMO

Aim & methods: The Health and Environmental Sciences Institute Cell Therapy-TRAcking, Circulation & Safety Technical Committee launched an international, multisite study to evaluate the sensitivity and reproducibility of the highly efficient culture (HEC) assay, an in vitro assay to detect residual undifferentiated human pluripotent stem cells (hPSCs) in cell therapy products. Results: All facilities detected colonies of human induced pluripotent stem cells (hiPSCs) when five hiPSCs were spiked into 1 million hiPSC-derived cardiomyocytes. Spiking with a trace amount of hiPSCs revealed that repeatability accounts for the majority of reproducibility while the true positive rate was high. Conclusion: The results indicate that the HEC assay is highly sensitive and robust and can be generally applicable for tumorigenicity evaluation of hPSC-derived cell therapy products.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Reprodutibilidade dos Testes , Academias e Institutos , Bioensaio
3.
Nat Cell Biol ; 24(5): 659-671, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550611

RESUMO

Heart regeneration is an unmet clinical need, hampered by limited renewal of adult cardiomyocytes and fibrotic scarring. Pluripotent stem cell-based strategies are emerging, but unravelling cellular dynamics of host-graft crosstalk remains elusive. Here, by combining lineage tracing and single-cell transcriptomics in injured non-human primate heart biomimics, we uncover the coordinated action modes of human progenitor-mediated muscle repair. Chemoattraction via CXCL12/CXCR4 directs cellular migration to injury sites. Activated fibroblast repulsion targets fibrosis by SLIT2/ROBO1 guidance in organizing cytoskeletal dynamics. Ultimately, differentiation and electromechanical integration lead to functional restoration of damaged heart muscle. In vivo transplantation into acutely and chronically injured porcine hearts illustrated CXCR4-dependent homing, de novo formation of heart muscle, scar-volume reduction and prevention of heart failure progression. Concurrent endothelial differentiation contributed to graft neovascularization. Our study demonstrates that inherent developmental programmes within cardiac progenitors are sequentially activated in disease, enabling the cells to sense and counteract acute and chronic injury.


Assuntos
Proteínas do Tecido Nervoso , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Cicatriz/patologia , Cicatriz/prevenção & controle , Fibrose , Humanos , Miocárdio/patologia , Miócitos Cardíacos/patologia , Células-Tronco Pluripotentes/patologia , Receptores Imunológicos , Suínos
4.
Nanoscale ; 11(14): 6990-7001, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30916672

RESUMO

Extracellular vesicles (EVs) mediate cellular communication through the transfer of active biomolecules, raising interest in using them as biological delivery vehicles for therapeutic drugs. For drug delivery applications, it is important to understand the intrinsic safety and toxicity liabilities of EVs. Nanoparticles, including EVs, typically demonstrate significant accumulation in the liver after systemic administration in vivo. We confirmed uptake of EVs derived from Expi293F cells into HepG2 cells and did not detect any signs of hepatotoxicity measured by cell viability, functional secretion of albumin, plasma membrane integrity, and mitochondrial and lysosomal activity even at high exposures of up to 5 × 1010 EVs per mL. Whole genome transcriptome analysis was used to measure potential effects on the gene expression in the recipient HepG2 cells at 24 h following exposure to EVs. Only 0.6% of all genes were found to be differentially expressed displaying less than 2-fold expression change, with genes related to inflammation or toxicity being unaffected. EVs did not trigger any proinflammatory cytokine response in HepG2 cells. However, minor changes were noted in human blood for interleukin (IL)-8, IL-6, and monocyte chemotactic protein 1 (MCP-1). Administration of 5 × 1010 Expi293F-derived EVs to BALB/c mice did not result in any histopathological changes or increases of liver transaminases or cytokine levels, apart from a modest increase in keratinocyte chemoattractant (KC). The absence of any significant toxicity associated with EVs in vitro and in vivo supports the prospective use of EVs for therapeutic applications and for drug delivery.


Assuntos
Vesículas Extracelulares/fisiologia , Fígado/patologia , Animais , Citocinas/metabolismo , Vesículas Extracelulares/transplante , Células HEK293 , Células Hep G2 , Humanos , Mediadores da Inflamação/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Albumina Sérica/metabolismo , Transaminases/metabolismo , Transcriptoma
5.
Toxicol Sci ; 163(1): 70-78, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29325107

RESUMO

Nucleoside analogs with 2'-modified sugar moieties are often used to improve the RNA target affinity and nuclease resistance of therapeutic oligonucleotides in preclinical and clinical development. Despite their enhanced nuclease resistance, oligonucleotides could slowly degrade releasing nucleoside analogs that have the potential to become phosphorylated and incorporated into cellular DNA and RNA. For the first time, the phosphorylation and DNA/RNA incorporation of 2'-O-(2-methoxyethyl) (2'-O-MOE) nucleoside analogs have been investigated. Using liquid chromatography/tandem mass spectrometry, we showed that enzymes in the nucleotide salvage pathway including deoxycytidine kinase (dCK) and thymidine kinase (TK1) displayed poor reactivity toward 2'-O-MOE nucleoside analogs. On the other hand, 2'-fluoro (F) nucleosides, regardless of the nucleobase, were efficiently phosphorylated to their monophosphate forms by dCK and TK1. Consistent with their efficient phosphorylation by dCK and TK1, 2'-F nucleoside analogs were incorporated into cellular DNA and RNA while no incorporation was detected with 2'-O-MOE nucleoside analogs. In conclusion, these data suggest that the inability of dCK and TK1 to create the monophosphates of 2'-O-MOE nucleoside analogs reduces the risk of their incorporation into cellular DNA and RNA.


Assuntos
Núcleo Celular/efeitos dos fármacos , DNA/metabolismo , Genoma Humano , Nucleosídeos/farmacologia , RNA/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Desoxicitidina Quinase/metabolismo , Humanos , Nucleosídeos/química , Fosforilação , Especificidade por Substrato , Timidina Quinase/metabolismo
6.
Toxicol Sci ; 155(1): 101-111, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27660205

RESUMO

Triplex forming oligonucleotides (TFOs) bind in the major groove of DNA duplex in a sequence-specific manner imparted by Hoogsteen hydrogen bonds. There have been several reports demonstrating the ability of guanine-rich TFOs to induce targeted mutagenesis on an exogenous plasmid or an endogenous chromosomal locus. In particular, a 30mer guanine-rich triplex forming oligonucleotide, AG30, optimally designed to target the supFG1 reporter gene was reported to be mutagenic in the absence of DNA reactive agents in cultured cells and in vivo Here, we investigated the mutagenic potential of AG30 using the supFG1 shuttle vector forward mutation assay under physiological conditions. We also assessed the triplex binding potential of AG30 alongside cytotoxic and mutagenic assessment. In a cell free condition, AG30 was able to bind its polypurine target site in the supFG1 gene in the absence of potassium chloride and also aligned with a 5-fold increase in the mutant frequency when AG30 was pre-incubated with the supFG1 plasmid in the absence of potassium prior to transfection into COS-7 cells. However, when we analyzed triplex formation of AG30 and the supFG1 target duplex at physiological potassium levels, triplex formation was inhibited due to the formation of competing secondary structures. Subsequent assessment of mutant frequency under physiological conditions, by pre-transfecting COS-7 cells with the supFG1 plasmid prior to AG30 treatment led to a very small increase (1.4-fold) in the mutant frequency. Transfection of cells with even higher concentrations of AG30 did result in an elevated mutagenic response but this was also seen with a scrambled sequence, and was therefore considered unlikely to be biologically relevant as an associated increase in cytotoxicity was also apparent. Our findings also provide further assurance on the low potential of triplex-mediated mutation as a consequence of unintentional genomic DNA binding by therapeutic antisense oligonucleotides.


Assuntos
Guanina/metabolismo , Mutagênicos/farmacologia , Oligonucleotídeos/farmacologia , Animais , Células COS , Chlorocebus aethiops , Vetores Genéticos , Mutação , Ligação Proteica
7.
Mutagenesis ; 31(2): 117-30, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26712374

RESUMO

In vitro genotoxicity assessment routinely employs an exogenous metabolic activation mixture to simulate mammalian metabolism. Activation mixtures commonly contain post-mitochondrial liver supernatant (i.e. S9) from chemically induced Sprague Dawley rats. Although Organization for Economic Cooperation and Development (OECD) test guidelines permit the use of other S9 preparations, assessments rarely employ human-derived S9. The objective of this study is to review and evaluate the use of human-derived S9 for in vitro genetic toxicity assessment. All available published genotoxicity assessments employing human S9 were compiled for analysis. To facilitate comparative analyses, additional matched Ames data using induced rat liver S9 were obtained for certain highly cited chemicals. Historical human and induced rat S9 quality control reports from Moltox were obtained and mined for enzyme activity and mutagenic potency data. Additional in vitro micronucleus data were experimentally generated using human and induced rat S9. The metabolic activity of induced rat S9 was found to be higher than human S9, and linked to high mutagenic potency results. This study revealed that human S9 often yields significantly lower Salmonella mutagenic potency values, especially for polycyclic aromatic hydrocarbons, aflatoxin B1 and heterocyclic amines (~3- to 350-fold). Conversely, assessment with human S9 activation yields higher potency for aromatic amines (~2- to 50-fold). Outliers with extremely high mutagenic potency results were observed in the human S9 data. Similar trends were observed in experimentally generated mammalian micronucleus cell assays, however human S9 elicited potent cytotoxicity L5178Y, CHO and TK6 cell lines. Due to the potential for reduced sensitivity and the absence of a link between enzyme activity levels and mutagenic potency, human liver S9 is not recommended for use alone in in vitro genotoxicity screening assays; however, human S9 may be extremely useful in follow-up tests, especially in the case of chemicals with species-specific metabolic differences, such as aromatic amines.


Assuntos
Ativação Metabólica , Sistema Livre de Células , Hepatócitos/metabolismo , Testes de Mutagenicidade/métodos , Animais , Carcinógenos/toxicidade , Linhagem Celular , Ativação Enzimática , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Camundongos , Testes para Micronúcleos , Mutagênicos/toxicidade , Ratos , Salmonella/efeitos dos fármacos , Salmonella/genética
8.
Toxicol Sci ; 148(2): 355-67, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26443842

RESUMO

In this study, we explored the applicability of using in vitro micronucleus (MN) data from human lymphoblastoid TK6 cells to derive in vivo genotoxicity potency information. Nineteen chemicals covering a broad spectrum of genotoxic modes of action were tested in an in vitro MN test using TK6 cells using the same study protocol. Several of these chemicals were considered to need metabolic activation, and these were administered in the presence of S9. The Benchmark dose (BMD) approach was applied using the dose-response modeling program PROAST to estimate the genotoxic potency from the in vitro data. The resulting in vitro BMDs were compared with previously derived BMDs from in vivo MN and carcinogenicity studies. A proportional correlation was observed between the BMDs from the in vitro MN and the BMDs from the in vivo MN assays. Further, a clear correlation was found between the BMDs from in vitro MN and the associated BMDs for malignant tumors. Although these results are based on only 19 compounds, they show that genotoxicity potencies estimated from in vitro tests may result in useful information regarding in vivo genotoxic potency, as well as expected cancer potency. Extension of the number of compounds and further investigation of metabolic activation (S9) and of other toxicokinetic factors would be needed to validate our initial conclusions. However, this initial work suggests that this approach could be used for in vitro to in vivo extrapolations which would support the reduction of animals used in research (3Rs: replacement, reduction, and refinement).


Assuntos
Alternativas aos Testes com Animais/normas , Benchmarking/normas , Linfócitos/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos/normas , Modelos Biológicos , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Linfócitos/patologia , Reprodutibilidade dos Testes , Medição de Risco
9.
Environ Mol Mutagen ; 55(1): 35-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24375635

RESUMO

There has been much discussion on acceptable spontaneous mutant frequencies in the mouse lymphoma assay (MLA). This culminated in the International Workshop on Genotoxicity Testing (IWGT) recommended control limits for the microtitre version of 50-170 mutants/10(6) viable cells, which has now been included in the draft Organization for Economic Co-Operation and Development guideline for assays investigating mammalian cell gene mutation at the tk locus. Some of the factors affecting mutant frequency have been investigated. It was shown that when culturing methotrexate cleansed TK⁺/⁻ cells, a spontaneous mutant frequency of ∼100 mutants/106 viable cells was achieved after only 26 doublings. However, after further culturing for ∼6 months the spontaneous mutant frequency only gradually increased. Culturing for this time did not affect the karyotype of the cell in so much as the modal chromosome number remained stable. The spontaneous mutant frequency could effectively be manipulated by cleansing with various concentrations of methotrexate. The necessity for using appropriately heat-inactivated horse serum was confirmed. Finally, following treatment with 4-nitroquinoline-N-oxide, cells did not preferentially survive when plated at high cell densities (1.6 cells plus 2,000 feeder cells/well) versus cells at low density (1.6 cells/well). It was considered that these findings confirm that the dynamics of spontaneous mutant formation in the MLA are complex. However, the karyotype of L5178Y cells is remarkably stable and assuming investigators are using cells with appropriate provenance and good culturing technique, it is clear that the IWGT recommendations are achievable.


Assuntos
Cariótipo , Linfoma/genética , Testes de Mutagenicidade/métodos , Taxa de Mutação , Timidina Quinase/genética , 4-Nitroquinolina-1-Óxido/farmacologia , Animais , Técnicas de Cultura/métodos , Cavalos/sangue , Temperatura Alta , Linfoma/tratamento farmacológico , Metotrexato , Camundongos , Soro , Fatores de Tempo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA