Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2518, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947856

RESUMO

Immunization with Plasmodium falciparum (Pf) sporozoites under chemoprophylaxis (PfSPZ-CVac) is the most efficacious approach to malaria vaccination. Implementation is hampered by a complex chemoprophylaxis regimen and missing evidence for efficacy against heterologous infection. We report the results of a double-blinded, randomized, placebo-controlled trial of a simplified, condensed immunization regimen in malaria-naive volunteers (EudraCT-Nr: 2018-004523-36). Participants are immunized by direct venous inoculation of 1.1 × 105 aseptic, purified, cryopreserved PfSPZ (PfSPZ Challenge) of the PfNF54 strain or normal saline (placebo) on days 1, 6 and 29, with simultaneous oral administration of 10 mg/kg chloroquine base. Primary endpoints are vaccine efficacy tested by controlled human malaria infection (CHMI) using the highly divergent, heterologous strain Pf7G8 and safety. Twelve weeks following immunization, 10/13 participants in the vaccine group are sterilely protected against heterologous CHMI, while (5/5) participants receiving placebo develop parasitemia (risk difference: 77%, p = 0.004, Boschloo's test). Immunization is well tolerated with self-limiting grade 1-2 headaches, pyrexia and fatigue that diminish with each vaccination. Immunization induces 18-fold higher anti-Pf circumsporozoite protein (PfCSP) antibody levels in protected than in unprotected vaccinees (p = 0.028). In addition anti-PfMSP2 antibodies are strongly protection-associated by protein microarray assessment. This PfSPZ-CVac regimen is highly efficacious, simple, safe, well tolerated and highly immunogenic.


Assuntos
Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Vacinação/métodos , Vacinas Atenuadas/imunologia , Adulto , Antimaláricos/uso terapêutico , Linhagem Celular , Quimioprevenção , Cloroquina/uso terapêutico , Feminino , Humanos , Imunoglobulina G/imunologia , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Parasitemia/imunologia , Análise Serial de Proteínas , Esporozoítos/imunologia , Vacinação/efeitos adversos , Vacinas Atenuadas/efeitos adversos
2.
Malar J ; 20(1): 37, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430886

RESUMO

BACKGROUND: Plasmodium falciparum, the parasite causing malaria, affects populations in many endemic countries threatening mainly individuals with low malaria immunity, especially children. Despite the approval of the first malaria vaccine Mosquirix™ and very promising data using cryopreserved P. falciparum sporozoites (PfSPZ), further research is needed to elucidate the mechanisms of humoral immunity for the development of next-generation vaccines and alternative malaria therapies including antibody therapy. A high prevalence of antibodies against AMA1 in immune individuals has made this antigen one of the major blood-stage vaccine candidates. MATERIAL AND METHODS: Using antibody phage display, an AMA1-specific growth inhibitory human monoclonal antibody from a malaria-immune Fab library using a set of three AMA1 diversity covering variants (DiCo 1-3), which represents a wide range of AMA1 antigen sequences, was selected. The functionality of the selected clone was tested in vitro using a growth inhibition assay with P. falciparum strain 3D7. To potentially improve affinity and functional activity of the isolated antibody, a phage display mediated light chain shuffling was employed. The parental light chain was replaced with a light chain repertoire derived from the same population of human V genes, these selected antibodies were tested in binding tests and in functionality assays. RESULTS: The selected parental antibody achieved a 50% effective concentration (EC50) of 1.25 mg/mL. The subsequent light chain shuffling led to the generation of four derivatives of the parental clone with higher expression levels, similar or increased affinity and improved EC50 against 3D7 of 0.29 mg/mL. Pairwise epitope mapping gave evidence for binding to AMA1 domain II without competing with RON2. CONCLUSION: We have thus shown that a compact immune human phage display library is sufficient for the isolation of potent inhibitory monoclonal antibodies and that minor sequence mutations dramatically increase expression levels in Nicotiana benthamiana. Interestingly, the antibody blocks parasite inhibition independently of binding to RON2, thus having a yet undescribed mode of action.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Imunidade Humoral , Proteínas de Membrana/genética , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Anticorpos Monoclonais/imunologia , Antígenos de Protozoários/metabolismo , Humanos , Vacinas Antimaláricas/química , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo
3.
PLoS One ; 15(12): e0243286, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33270761

RESUMO

In vitro and ex vivo development of novel therapeutic agents requires reliable and accurate analyses of the cell conditions they were preclinical tested for, such as apoptosis. The detection of apoptotic cells by annexin V (AV) coupled to fluorophores has often shown limitations in the choice of the dye due to interference with other fluorescent-labeled cell markers. The SNAP-tag technology is an easy, rapid and versatile method for functionalization of proteins and was therefore used for labeling AV with various fluorophores. We generated the fusion protein AV-SNAP and analyzed its capacity for the specific display of apoptotic cells in various assays with therapeutic agents. AV-SNAP showed an efficient coupling reaction with five different fluorescent dyes. Two selected fluorophores were tested with suspension, adherent and peripheral blood cells, treated by heat-shock or apoptosis-inducing therapeutic agents. Flow cytometry analysis of apoptotic cells revealed a strong visualization using AV-SNAP coupled to these two fluorophores exemplary, which was comparable to a commercial AV-Assay-kit. The combination of the apoptosis-specific binding protein AV with the SNAP-tag provides a novel solid method to facilitate protein labeling using several, easy to change, fluorescent dyes at once. It avoids high costs and allows an ordinary exchange of dyes and easier use of other fluorescent-labeled cell markers, which is of high interest for the preclinical testing of therapeutic agents in e.g. cancer research.


Assuntos
Apoptose/fisiologia , Corantes Fluorescentes/química , Coloração e Rotulagem/métodos , Marcadores de Afinidade/química , Anexina A5/química , Anexina A5/metabolismo , Células Sanguíneas/metabolismo , Linhagem Celular Tumoral , Citometria de Fluxo/métodos , Humanos , Neoplasias/metabolismo , Proteínas/química , Proteínas/metabolismo , Tecnologia
4.
Eur Cytokine Netw ; 29(2): 59-72, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30148452

RESUMO

Interleukin-6 (IL-6) expression and secretion, induced by inflammatory processes, stimulate the acute phase response cascade. The overexpression of IL-6 contributes to a variety of inflammatory diseases, e.g. rheumatoid arthritis, Castleman's disease, multiple myeloma, and prostate cancer. Screening for high amounts of IL-6 in the patients' blood serum can be crucial for an adequate treatment. In this study, five novel murine monoclonal antibodies (mAbs) reactive to human IL-6 were generated. The mAbs were characterized for potential diagnostic purposes and recombinant antibodies were derived thereof. Initial epitope mapping using a combination of blocking experiments and Hyper-IL-6, a fusion protein consisting of IL-6 and the soluble IL-6 receptor revealed distinct but overlapping binding sites. At least one of the mAbs was found to interact with the region of IL-6/ IL-R complex formation. Three mAbs were applied successfully in intracellular staining by flow cytometry, whereas one of the mAbs showed comparable binding as a reference reagent. Furthermore, the mAbs were tested for applications in various immunological assays such as ELISA, Western blot and surface plasmon resonance spectroscopy (SPR), using IL-6 from commercial sources as well as in-house produced protein (IL-6_IME). The limit of detection was determined by sandwich ELISA (0.5 ng/mL, SD ±0.005). Our results also demonstrated that the recombinant IL-6 produced was functional and correctly folded. These findings support the use of the generated mAb clones as promising candidates for application in various immunological assays for diagnostic and scientific purposes.


Assuntos
Anticorpos Monoclonais/farmacologia , Sítios de Ligação , Citocinas/metabolismo , Interleucina-6/antagonistas & inibidores , Receptores de Interleucina-6/metabolismo , Animais , Expressão Gênica , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Espaço Intracelular/metabolismo , Camundongos , Monócitos/metabolismo , Ligação Proteica , Receptores de Interleucina-6/química , Proteínas Recombinantes de Fusão/genética
5.
J Cancer Res Clin Oncol ; 143(11): 2159-2170, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28669053

RESUMO

PURPOSE: Treatment of cancer using standard chemotherapy still offers a poor prognosis combined with severe side effects. Novel antibody-based therapies have been shown to overcome low efficiency and lack of selectivity by targeting cancer-associated antigens, such as aminopeptidase CD13. METHODS: We isolated a high-affinity CD13-specific single-chain fragment variable (scFv13) from a phage display library of V-genes from mice immunized with soluble antigen. An immunotoxin comprising the scFv13 and a truncated version of the exotoxin A of Pseudomonas aeruginosa (ETA', scFv13-ETA') and a bispecific scFv targeting CD13 and CD16 simultaneously (bsscFv[13xds16]) was generated and investigated for their therapeutic potential. RESULTS: Both fusion proteins bound specifically to target cells with high affinity. Furthermore, scFv13-ETA' inhibited the proliferation of human cancer cell lines efficiently at low concentrations (IC50 values of 408 pM-7 nM) and induced apoptosis (40-85% of target cells). The bsscFv triggered dose-dependent antibody-dependent cell-mediated cytotoxicity, resulting in the lysis of up to 23.9% A2058 cells, 18.0% MDA-MB-468 cells and 19.1% HL-60 cells. CONCLUSION: The provided data demonstrate potent therapeutic activity of the scFv13-ETA' and the bsscFv[13xds16]. The CD13-specific scFv is therefore suitable for the direct and specific delivery of both cytotoxic agents and effector cells to cancer-derived cells, making it ideal for further therapeutic evaluation.


Assuntos
ADP Ribose Transferases/imunologia , Anticorpos Biespecíficos/farmacologia , Apoptose/efeitos dos fármacos , Toxinas Bacterianas/imunologia , Antígenos CD13/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Exotoxinas/imunologia , Imunotoxinas/farmacologia , Neoplasias/tratamento farmacológico , Anticorpos de Cadeia Única/imunologia , Fatores de Virulência/imunologia , Antígenos CD13/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Proteínas Recombinantes/farmacologia , Células Tumorais Cultivadas , Exotoxina A de Pseudomonas aeruginosa
6.
PLoS One ; 12(7): e0180305, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28704435

RESUMO

The antigen-specific targeting of autoreactive B cells via their unique B cell receptors (BCRs) is a novel and promising alternative to the systemic suppression of humoral immunity. We generated and characterized cytolytic fusion proteins based on an existing immunotoxin comprising tetanus toxoid fragment C (TTC) as the targeting component and the modified Pseudomonas aeruginosa exotoxin A (ETA') as the cytotoxic component. The immunotoxin was reconfigured to replace ETA' with either the granzyme B mutant R201K or MAPTau as human effector domains. The novel cytolytic fusion proteins were characterized with a recombinant human lymphocytic cell line developed using Transpo-mAb™ technology. Genes encoding a chimeric TTC-reactive immunoglobulin G were successfully integrated into the genome of the precursor B cell line REH so that the cells could present TTC-reactive BCRs on their surface. These cells were used to investigate the specific cytotoxicity of GrB(R201K)-TTC and TTC-MAPTau, revealing that the serpin proteinase inhibitor 9-resistant granzyme B R201K mutant induced apoptosis specifically in the lymphocytic cell line. Our data confirm that antigen-based fusion proteins containing granzyme B (R201K) are suitable candidates for the depletion of autoreactive B cells.


Assuntos
Linfócitos B/citologia , Engenharia Celular/métodos , Granzimas/genética , Toxoide Tetânico/imunologia , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Granzimas/metabolismo , Humanos , Imunotoxinas/metabolismo , Receptores de Antígenos de Linfócitos B/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Cadeia Única/metabolismo , Toxoide Tetânico/metabolismo
7.
Sci Rep ; 6: 39462, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000709

RESUMO

Malaria remains a major challenge to global health causing extensive morbidity and mortality. Yet, there is no efficient vaccine and the immune response remains incompletely understood. Apical Membrane Antigen 1 (AMA1), a leading vaccine candidate, plays a key role during merozoite invasion into erythrocytes by interacting with Rhoptry Neck Protein 2 (RON2). We generated a human anti-AMA1-antibody (humAbAMA1) by EBV-transformation of sorted B-lymphocytes from a Ghanaian donor and subsequent rescue of antibody variable regions. The antibody was expressed in Nicotiana benthamiana and in HEK239-6E, characterized for binding specificity and epitope, and analyzed for its inhibitory effect on Plasmodium falciparum. The generated humAbAMA1 shows an affinity of 106-135 pM. It inhibits the parasite strain 3D7A growth in vitro with an expression system-independent IC50-value of 35 µg/ml (95% confidence interval: 33 µg/ml-37 µg/ml), which is three to eight times lower than the IC50-values of inhibitory antibodies 4G2 and 1F9. The epitope was mapped to the close proximity of the RON2-peptide binding groove. Competition for binding between the RON2-peptide and humAbAMA1 was confirmed by surface plasmon resonance spectroscopy measurements. The particularly advantageous inhibitory activity of this fully human antibody might provide a basis for future therapeutic applications.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Protozoários/imunologia , Eritrócitos/parasitologia , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Linfócitos B/parasitologia , Ligação Competitiva , Linhagem Celular , Epitopos/imunologia , Eritrócitos/imunologia , Humanos , Imunoglobulina G/imunologia , Concentração Inibidora 50 , Leucócitos Mononucleares/parasitologia , Conformação Molecular , Ligação Proteica , Ressonância de Plasmônio de Superfície , Nicotiana
8.
Oncotarget ; 7(41): 67166-67174, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27564103

RESUMO

Fc gamma receptor I (FcγRI, CD64) is a well-known target antigen for passive immunotherapy against acute myeloid leukemia and chronic myelomonocytic leukemia. We recently reported the preclinical immunotherapeutic potential of microtubule associated protein tau (MAP) against a variety of cancer types including breast carcinoma and Hodgkin's lymphoma. Here we demonstrate that the CD64-directed human cytolytic fusion protein H22(scFv)-MAP kills ex vivo 15-50% of CD64+ leukemic blasts derived from seven myeloid leukemia patients. Furthermore, in contrast to the nonspecific cytostatic agent paclitaxel, H22(scFv)-MAP showed no cytotoxicity towards healthy CD64+ PBMC-derived cells and macrophages. The targeted delivery of this microtubule stabilizing agent therefore offers a promising new strategy for specific treatment of CD64+ leukemia.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda , Proteínas Associadas aos Microtúbulos/farmacologia , Terapia de Alvo Molecular/métodos , Receptores de IgG , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Feminino , Humanos , Imunotoxinas/farmacologia , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes de Fusão/farmacologia
9.
Cancer Lett ; 381(2): 323-30, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27502168

RESUMO

Antibody-drug conjugates (ADCs) combine the potency of cytotoxic drugs with the specificity of monoclonal antibodies (mAbs). Most ADCs are currently generated by the nonspecific conjugation of drug-linker reagents to certain amino acid residues in mAbs, resulting in a heterogeneous product. To overcome this limitation and prepare ADCs with a defined stoichiometry, we use SNAP-tag technology as an alternative conjugation strategy. This allows the site-specific conjugation of O(6)-benzylguanine (BG)-modified small molecules to SNAP-tag fusion proteins. To demonstrate the suitability of this system for the preparation of novel recombinant ADCs, here we conjugated SNAP-tagged single chain antibody fragments (scFvs) to a BG-modified version of auristatin F (AURIF). We used two scFv-SNAP fusion proteins targeting members of the epidermal growth factor receptor (EGFR) family that are frequently overexpressed in breast cancer. The conjugation of BG-AURIF to EGFR-specific 425(scFv)-SNAP and HER2-specific αHER2(scFv)-SNAP resulted in two potent recombinant ADCs that specifically killed breast cancer cell lines by inducing apoptosis when applied at nanomolar concentrations. These data confirm that SNAP-tag technology is a promising tool for the generation of novel recombinant ADCs.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Receptores ErbB/imunologia , Guanina/análogos & derivados , Imunoterapia/métodos , Imunotoxinas/farmacologia , Oligopeptídeos/farmacologia , Proteínas Q-SNARE/farmacologia , Receptor ErbB-2/imunologia , Anticorpos de Cadeia Única/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Receptores ErbB/metabolismo , Guanina/farmacologia , Humanos , Imunotoxinas/imunologia , Concentração Inibidora 50 , Camundongos , Proteínas Q-SNARE/imunologia , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos , Anticorpos de Cadeia Única/imunologia
10.
Bioconjug Chem ; 27(8): 1931-41, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27391930

RESUMO

Antibody derivatives, such as the single chain fragment variable (scFv), can be developed as diagnostic and therapeutic tools in cancer research, especially in the form of fusion proteins. Such derivatives are easier to produce and modify than monoclonal antibodies (mAbs) and achieve better tissue/tumor penetration. The genetic modification of scFvs is also much more straightforward than the challenging chemical modification of mAbs. Therefore, we constructed two scFvs derived from the approved monoclonal antibodies cetuximab (scFv2112) and panitumumab (scFv1711), both of which are specific for the epidermal growth factor receptor (EGFR), a well-characterized solid tumor antigen. Both scFvs were genetically fused to the SNAP-tag, an engineered version of the human DNA repair enzyme O(6)-alkylguanine DNA alkyltransferase that allows the covalent coupling of benzylguanine (BG)-modified substrates such as fluorescent dyes. The SNAP-tag achieves controllable and irreversible protein modification and is an important tool for experimental studies in vitro and in vivo. The affinity constant of a scFv is a key functional parameter, especially in the context of a fusion protein. Therefore, we developed a method to define the affinity constants of scFv-SNAP fusion proteins by surface plasmon resonance (SPR) spectroscopy. We could confirm that both scFvs retained their functionality after fusion to the SNAP-tag in a variety of procedures and assays, including ELISA, flow cytometry, and confocal microscopy. The experimental procedures described herein, and the new protocol for affinity determination by SPR spectroscopy, are suitable for the preclinical evaluation of diverse antibody formats and derivatives.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Panitumumabe
11.
Cancer Lett ; 374(2): 229-40, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26912070

RESUMO

Human cytolytic fusion proteins (hCFPs) offer a promising immunotherapeutic approach for the treatment of solid tumors, avoiding the immunogenicity and undesirable side-effects caused by immunotoxins derived from plants or bacteria. The well-characterized human serine protease granzyme B has already been used as a therapeutic pro-apoptotic effector domain. We therefore developed a novel recombinant hCFP (GbR201K-scFv1711) consisting of an epidermal growth factor receptor-specific human antibody fragment and a granzyme B point mutant (R201K) that is insensitive to serpin B9 (PI9), a natural inhibitor of wild-type granzyme B that is often expressed in solid tumors. We found that GbR201K-scFv1711 selectively bound to epidermoid cancer and rhabdomyosarcoma cells and was rapidly internalized by them. Nanomolar concentrations of GbR201K-scFv1711 achieved the specific killing of epidermoid cancer cells by inducing apoptosis, and similar effects were observed in rhabdomyosarcoma cells when GbR201K-scFv1711 was combined with the endosomolytic substance chloroquine. The novel hCFP was stable in serum and bound to human rhabdomyosarcoma tissue ex vivo. These data confirm that GbR201K-scFv1711 is a promising therapeutic candidate suitable for further clinical investigation.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Receptores ErbB/biossíntese , Granzimas/farmacologia , Imunotoxinas/farmacologia , Linfoma/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/farmacologia , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Cloroquina/farmacologia , Receptores ErbB/genética , Receptores ErbB/imunologia , Granzimas/genética , Células HEK293 , Humanos , Imunotoxinas/genética , Imunotoxinas/imunologia , Linfoma/enzimologia , Linfoma/imunologia , Linfoma/patologia , Masculino , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Células U937
12.
Malar J ; 14: 276, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26174014

RESUMO

BACKGROUND: Semi-immunity against the malaria parasite is defined by a protection against clinical episodes of malaria and is partially mediated by a repertoire of inhibitory antibodies directed against the blood stage of Plasmodium falciparum, in particular against surface proteins of merozoites, the invasive form of the parasite. Such antibodies may be used for preventive or therapeutic treatment of P. falciparum malaria. Here, the isolation and characterization of novel human monoclonal antibodies (humAbs) for such applications is described. METHODS: B lymphocytes had been selected by flow cytometry for specificity against merozoite surface proteins, including the merozoite surface protein 10 (MSP10). After Epstein-Barr virus (EBV) transformation and identification of promising resulting lymphoblastoid cell lines (LCLs), human immunoglobulin heavy and light chain variable regions (Vh or Vl regions) were secured, cloned into plant expression vectors and transiently produced in Nicotiana benthamiana in the context of human full-size IgG1:κ. The specificity and the affinity of the generated antibodies were assessed by ELISA, dotblot and surface plasmon resonance (SPR) spectroscopy. The growth inhibitory activity was evaluated based on growth inhibition assays (GIAs) using the parasite strain 3D7A. RESULTS: Supernatants from two LCLs, 5E8 and 5F6, showed reactivity against the second (5E8) or first (5F6) epidermal growth factor (EGF)-like domain of MSP10. The isolated V regions were recombinantly expressed in their natural pairing as well as in combination with each other. The resulting recombinant humAbs showed affinities of 9.27 × 10(-7) M [humAb10.1 (H5F6:κ5E8)], 5.46 × 10(-9) M [humAb10.2 (H5F6:κ5F6)] and 4.34 × 10(-9) M [humAb10.3 (H5E8:κ5E8)]. In GIAs, these antibodies exhibited EC50 values of 4.1 mg/ml [95% confidence interval (CI) 2.6-6.6 mg/ml], 6.9 mg/ml (CI 5.5-8.6 mg/ml) and 9.5 mg/ml (CI 5.5-16.4 mg/ml), respectively. CONCLUSION: This report describes a platform for the isolation of human antibodies from semi-immune blood donors by EBV transformation and their subsequent characterization after transient expression in plants. To our knowledge, the presented antibodies are the first humAbs directed against P. falciparum MSP10 to be described. They recognize the EGF-like folds of MSP10 and bind these with high affinity. Moreover, these antibodies inhibit P. falciparum 3D7A growth in vitro.


Assuntos
Anticorpos Monoclonais , Antígenos de Protozoários/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Proteínas Recombinantes , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Humanos , Plasmodium falciparum/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
13.
J Cancer Res Clin Oncol ; 141(12): 2079-95, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25899161

RESUMO

PURPOSE: The epidermal growth factor receptor (EGFR) is overexpressed in many solid tumors. EGFR-specific monoclonal antibodies (mAbs), such as cetuximab and panitumumab, have been approved for the treatment of colorectal and head and neck cancer. To increase tissue penetration, we constructed single-chain fragment variable (scFv) antibodies derived from these mAbs and evaluated their potential for targeted cancer therapy. The resulting scFv-based EGFR-specific immunotoxins (ITs) combine target specificity of the full-size mAb with the cell-killing activity of a toxic effector domain, a truncated version of Pseudomonas exotoxin A (ETA'). METHODS: The ITs and corresponding imaging probes were tested in vitro against four solid tumor entities (rhabdomyosarcoma, breast, prostate and pancreatic cancer). Specific binding and internalization of the ITs scFv2112-ETA' (from cetuximab) and scFv1711-ETA' (from panitumumab) were demonstrated by flow cytometry and for the scFv-SNAP-tag imaging probes by live cell imaging. Cytotoxic potential of the ITs was analyzed in cell viability and apoptosis assays. Binding of the ITs was proofed ex vivo on rhabdomyosarcoma, prostate and breast cancer formalin-fixed paraffin-embedded biopsies. RESULTS: Both novel ITs showed significant pro-apoptotic and anti-proliferative effects toward the target cells, achieving IC50 values of 4 pM (high EGFR expression) to 460 pM (moderate EGFR expression). Additionally, rapid internalization and specific in vitro and ex vivo binding on patient tissue were confirmed. CONCLUSIONS: These data demonstrate the potent therapeutic activity of two novel EGFR-specific ETA'-based ITs. Both molecules are promising candidates for further development toward clinical use in the treatment of various solid tumors to supplement the existing therapeutic regimes.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Cetuximab/farmacologia , Receptores ErbB/antagonistas & inibidores , Imunotoxinas/farmacologia , Neoplasias/tratamento farmacológico , ADP Ribose Transferases/metabolismo , Apoptose/efeitos dos fármacos , Toxinas Bacterianas/metabolismo , Western Blotting , Proliferação de Células/efeitos dos fármacos , Exotoxinas/metabolismo , Citometria de Fluxo , Humanos , Fatores Imunológicos/farmacologia , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Panitumumabe , Anticorpos de Cadeia Única/farmacologia , Células Tumorais Cultivadas , Fatores de Virulência/metabolismo , Exotoxina A de Pseudomonas aeruginosa
14.
Malar J ; 14: 50, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25651860

RESUMO

BACKGROUND: Monoclonal antibodies (mAbs) are essential tools in biological research, diagnosis and therapy, and are conventionally produced in murine hybridoma cell lines. Professional applications of mAbs depend on the steady supply of material. Because hybridoma cultures can stop producing the antibody or even die, preservation of the unique epitope specificity of mAbs by rescue of the sequences encoding the antibody variable domains (V regions) is important. The availability of these sequences enables not only the recombinant expression of the original antibody for further applications, but opens the road for antibody engineering towards innovative diagnostic or therapeutic applications. A time- and cost-efficient production system enabling the detailed analysis of the antibodies is an essential requirement in this context. METHODS: Sequences were rescued from three hybridoma cell lines, subjected to sequence analysis, subcloned into binary expression vectors and recombinantly expressed as chimeric mAb (constant regions of human IgG1:k1) in Nicotiana benthamiana plants. The properties of the recombinant and the murine mAbs were compared using competition enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) spectroscopy. The recognition of native PfMSP4 by the recombinant mAb was analysed by immunofluorescence staining of Pf 3D7A schizonts and by western blot analysis of merozoite extract. RESULTS: The rescued sequences of all three hybridoma cell lines were identical. The recombinant mAb was successfully expressed as IgG in plants at moderate levels (45 mg/kg fresh leaf weight). Preservation of the original epitope was demonstrated in a competition ELISA, using recombinant mAb and the three murine mAbs. EGF_PfMSP4-specific affinities were determined by SPR spectroscopy to 8 nM and 10 nM for the murine or recombinant mAb, respectively. Binding to parasite PfMSP4 was confirmed in an immunofluorescence assay showing a characteristic staining pattern and by western blot analysis using merozoite extract. CONCLUSIONS: As demonstrated by the example of an EGF_PfMSP4-specific antibody, the described combination of a simple and efficient hybridoma antibody cloning approach with the flexible, robust and cost-efficient transient expression system suitable to rapidly produce mg-amounts of functional recombinant antibodies provides an attractive method for the generation of mAbs and their derivatives as research tool, novel therapeutics or diagnostics.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Região Variável de Imunoglobulina/imunologia , Nicotiana/metabolismo , Proteínas de Protozoários/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antiprotozoários/genética , Anticorpos Antiprotozoários/isolamento & purificação , Western Blotting , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Humanos , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/isolamento & purificação , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Ressonância de Plasmônio de Superfície , Nicotiana/genética
15.
Biotechnol Bioeng ; 112(7): 1297-305, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25615702

RESUMO

Malaria is a vector-borne disease affecting more than two million people and accounting for more than 600,000 deaths each year, especially in developing countries. The most serious form of malaria is caused by Plasmodium falciparum. The complex life cycle of this parasite, involving pre-erythrocytic, asexual and sexual stages, makes vaccine development cumbersome but also offers a broad spectrum of vaccine candidates targeting exactly those stages. Vaccines targeting the sexual stage of P. falciparum are called transmission-blocking vaccines (TBVs). They do not confer protection for the vaccinated individual but aim to reduce or prevent the transmission of the parasite within a population and are therefore regarded as an essential tool in the fight against the disease. Malaria predominantly affects large populations in developing countries, so TBVs need to be produced in large quantities at low cost. Combining the advantages of eukaryotic expression with a virtually unlimited upscaling potential and a good product safety profile, plant-based expression systems represent a suitable alternative for the production of TBVs. We report here the high level (300 µg/g fresh leaf weight (FLW)) transient expression in Nicotiana benthamiana leaves of an effective TBV candidate based on a fusion protein F0 comprising Pfs25 and the C0-domain of Pfs230, and the implementation of a simple and cost-effective heat treatment step for purification that yields intact recombinant protein at >90% purity with a recovery rate of >70%. The immunization of mice clearly showed that antibodies raised against plant-derived F0 completely blocked the formation of oocysts in a malaria transmission-blocking assay (TBA) making F0 an interesting TBV candidate or a component of a multi-stage malaria vaccine cocktail.


Assuntos
Antígenos de Protozoários/isolamento & purificação , Precipitação Fracionada , Vacinas Antimaláricas/isolamento & purificação , Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Temperatura Alta , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/metabolismo , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/genética , Vacinação/métodos
16.
Plant Biotechnol J ; 13(2): 222-34, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25236489

RESUMO

One of the most promising malaria vaccine candidate antigens is the Plasmodium falciparum apical membrane antigen 1 (PfAMA1). Several studies have shown that this blood-stage antigen can induce strong parasite growth inhibitory antibody responses. PfAMA1 contains up to six recognition sites for N-linked glycosylation, a post-translational modification that is absent in P. falciparum. To prevent any potential negative impact of N-glycosylation, the recognition sites have been knocked out in most PfAMA1 variants expressed in eukaryotic hosts. However, N-linked glycosylation may increase efficacy by improving immunogenicity and/or focusing the response towards relevant epitopes by glycan masking. We describe the production of glycosylated and nonglycosylated PfAMA1 in Nicotiana benthamiana and its detailed characterization in terms of yield, integrity and protective efficacy. Both PfAMA1 variants accumulated to high levels (>510 µg/g fresh leaf weight) after transient expression, and high-mannose-type N-glycans were confirmed for the glycosylated variant. No significant differences between the N. benthamiana and Pichia pastoris PfAMA1 variants were detected in conformation-sensitive ligand-binding studies. Specific titres of >2 × 10(6) were induced in rabbits, and strong reactivity with P. falciparum schizonts was observed in immunofluorescence assays, as well as up to 100% parasite growth inhibition for both variants, with IC50 values of ~35 µg/mL. Competition assays indicated that a number of epitopes were shielded from immune recognition by N-glycans, warranting further studies to determine how glycosylation can be used for the directed targeting of immune responses. These results highlight the potential of plant transient expression systems as a production platform for vaccine candidates.


Assuntos
Antígenos de Protozoários/metabolismo , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/metabolismo , Nicotiana/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Animais , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Glicosilação , Soros Imunes , Imunização , Imunoglobulina G/metabolismo , Merozoítos/metabolismo , Modelos Moleculares , Parasitos/metabolismo , Pichia , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , Coelhos , Ressonância de Plasmônio de Superfície
17.
Biotechnol J ; 9(11): 1435-45, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25200253

RESUMO

Plants have emerged as low-cost production platforms suitable for vaccines targeting poverty-related diseases. Besides functional efficacy, the stability, yield, and purification process determine the production costs of a vaccine and thereby the feasibility of plant-based production. We describe high-level plant production and functional characterization of a malaria vaccine candidate targeting the pre-erythrocytic stage of Plasmodium falciparum. CCT, a fusion protein composed of three sporozoite antigens (P. falciparum cell traversal protein for ookinetes and sporozoites [PfCelTOS], P. falciparum circumsporozoite protein [PfCSP], and P. falciparum thrombospondin-related adhesive protein [PfTRAP]), was transiently expressed by agroinfiltration in Nicotiana benthamiana leaves, accumulated to levels up to 2 mg/g fresh leaf weight (FLW), was thermostable up to 80°C and could be purified to >95% using a simple two-step procedure. Reactivity of sera from malaria semi-immune donors indicated the immunogenic conformation of the purified fusion protein consisting of PfCelTOS, PfCSP_TSR, PfTRAP_TSR domains (CCT) protein. Total IgG from the CCT-specific mouse immune sera specifically recognized P. falciparum sporozoites in immunofluorescence assays and induced up to 35% inhibition in hepatocyte invasion assays. Featuring domains from three promising sporozoite antigens with different roles (attachment and cell traversal) in the hepatocyte invasion process, CCT has the potential to elicit broader immune responses against the pre-erythrocytic stage of P. falciparum and represents an interesting new candidate, also as a component of multi-stage, multi-subunit malaria vaccine cocktails.


Assuntos
Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plasmodium falciparum/imunologia , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Esporozoítos/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Temperatura Alta , Humanos , Vacinas Antimaláricas , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Camundongos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Nicotiana/genética
18.
PLoS One ; 8(11): e79920, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278216

RESUMO

Pf38 is a surface protein of the malarial parasite Plasmodium falciparum. In this study, we produced and purified recombinant Pf38 and a fusion protein composed of red fluorescent protein and Pf38 (RFP-Pf38) using a transient expression system in the plant Nicotiana benthamiana. To our knowledge, this is the first description of the production of recombinant Pf38. To verify the quality of the recombinant Pf38, plasma from semi-immune African donors was used to confirm specific binding to Pf38. ELISA measurements revealed that immune responses to Pf38 in this African subset were comparable to reactivities to AMA-1 and MSP119. Pf38 and RFP-Pf38 were successfully used to immunise mice, although titres from these mice were low (on average 1∶11.000 and 1∶39.000, respectively). In immune fluorescence assays, the purified IgG fraction from the sera of immunised mice recognised Pf38 on the surface of schizonts, gametocytes, macrogametes and zygotes, but not sporozoites. Growth inhibition assays using αPf38 antibodies demonstrated strong inhibition (≥60%) of the growth of blood-stage P. falciparum. The development of zygotes was also effectively inhibited by αPf38 antibodies, as determined by the zygote development assay. Collectively, these results suggest that Pf38 is an interesting candidate for the development of a malaria vaccine.


Assuntos
Antígenos de Protozoários/genética , Vacinas Antimaláricas/imunologia , Nicotiana/genética , Planticorpos/genética , Plasmodium falciparum/imunologia , Animais , Antígenos de Protozoários/imunologia , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Planticorpos/imunologia , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA