Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 862: 160690, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481133

RESUMO

Biochar (BC) application to farmland soil can reduce the mobility and bioavailability of Cd. Nevertheless, BC is prone to natural ageing in soil, which alters its structure, physicochemical properties, thereby affecting the immobilisation of Cd. We used dry-wet and freeze-thaw cycles to mimic the natural ageing of BC, and used adsorption experiments to explore the changes of Cd adsorption capacity of BC and aged BC (ABC). We conducted a pot experiment to investigate the effects of BC and ABC on soil biotic and abiotic factors, alfalfa growth, and Cd accumulation in agricultural soils with high and low Cd concentrations. The increase of specific surface area, pore size, oxygen containing functional groups and mineral composition leads to better adsorption capacity of ABC. The adsorption of Cd(II) by BC and ABC is mainly by monolayer adsorption and chemical adsorption. Applying BC and ABC to Cd-contaminated soil significantly increased the aboveground biomass and decreased the Cd accumulation by reducing the Cd bioconcentration factor in alfalfa. At high Cd levels, adding BC and ABC reduced the Cd content in alfalfa shoots by 32.8 % and 35.1 %, respectively; the fixing effect of ABC was better than that of BC. Adding BC and ABC significantly increased the microbial biomass and geometric mean of enzymes. BC addition increased soil pH by 0.32-0.36 units and cation exchange capacity (CEC) by 15.5 %. Adding BC and ABC significantly increased soil organic matter (SOM) by 5.7 % and 6.2 %, respectively. Random forest analysis showed that SOM, total organic carbon, and fluorescein diacetate hydrolase were important variables for Cd content in alfalfa shoots. Structural equation modelling showed that BC indirectly affected the Cd content in alfalfa shoots by affecting soil pH, CEC, SOM, microbial biomass, and microbial metabolic activity. BC has a long-term effect on alleviating Cd pollution in farmland.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Medicago sativa , Poluentes do Solo/análise , Carvão Vegetal/metabolismo , Solo/química
2.
J Hazard Mater ; 435: 129077, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35650732

RESUMO

Cadmium (Cd) pollution in croplands is a global environmental problem. Measures to improve the tolerance of sensitive crops and reduce pollutant absorption and accumulation are needed in contaminated agricultural areas, and inoculation with rhizosphere microorganisms to regulate plant resistance and heavy metal transport can provide an effective solution. A pot experiment was conducted to analyse the impact of arbuscular mycorrhizal fungi (AMF) on alfalfa oxidase activity, heavy metal resistance genes and transport proteins, metabolism, and other biochemical regulation mechanisms that lead to complexation, compartmentalisation, efflux, enrichment, and antioxidant detoxification pathways. The AMF reduced shoot and protoplasm Cd inflow, and promoted organic compound production (e.g., by upregulating HM-Res4 for 1.2 times), to complex with Cd, reducing its biological toxicity. The AMF increased the ROS scavenging efficiency and osmotic regulatory substance content of the alfalfa plants, reduced oxidative stress (ROS dereased), and maintained homeostasis. It also alleviated Cd inhibition of photosynthetic electron transport, tricarboxylic acid circulation, and nitrogen assimilation. These AMF effects improved leaf and root biomass by 43.87% and 59.71% and facilitated recovery of a conservative root economic strategy. It is speculated that AMF induces the resistance signal switch by regulating the negative feedback regulation mode of indole acetic acid upward transport and methyl jasmonate downward transmission in plants.


Assuntos
Metais Pesados , Micorrizas , Poluentes do Solo , Cádmio/metabolismo , Medicago sativa/metabolismo , Metais Pesados/metabolismo , Micorrizas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA