Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 19(6): 877-889, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38729156

RESUMO

Liver disease is a major global health challenge. There is a shortage of liver donors worldwide, and hepatocyte transplantation (HT) may be an effective treatment to overcome this problem. However, the present approaches for generation of hepatocytes are associated with challenges, and interspecies chimera-derived hepatocytes produced by interspecies blastocyst complementation (IBC) may be promising donor hepatocytes because of their more comprehensive hepatic functions. In this study, we isolated mouse hepatocytes from mouse-rat chimeric livers using IBC and found that interspecies chimera-derived hepatocytes exhibited mature hepatic functions in terms of lipid accumulation, glycogen storage, and urea synthesis. Meanwhile, they were more similar to endogenous hepatocytes than hepatocytes derived in vitro. Interspecies chimera-derived hepatocytes could relieve chronic liver fibrosis and reside in the injured liver after transplantation. Our results suggest that interspecies chimera-derived hepatocytes are a potentially reliable source of hepatocytes and can be applied as a therapeutic approach for HT.


Assuntos
Quimera , Hepatócitos , Cirrose Hepática , Fígado , Animais , Hepatócitos/metabolismo , Hepatócitos/citologia , Cirrose Hepática/terapia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Fígado/metabolismo , Fígado/patologia , Ratos , Diferenciação Celular , Camundongos Endogâmicos C57BL , Masculino , Blastocisto/metabolismo , Blastocisto/citologia , Doença Crônica , Células Cultivadas
2.
Signal Transduct Target Ther ; 8(1): 417, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907503

RESUMO

Immunity-and-matrix-regulatory cells (IMRCs) derived from human embryonic stem cells have unique abilities in modulating immunity and regulating the extracellular matrix, which could be mass-produced with stable biological properties. Despite resemblance to mesenchymal stem cells (MSCs) in terms of self-renew and tri-lineage differentiation, the ability of IMRCs to repair the meniscus and the underlying mechanism remains undetermined. Here, we showed that IMRCs demonstrated stronger immunomodulatory and pro-regenerative potential than umbilical cord MSCs when stimulated by synovial fluid from patients with meniscus injury. Following injection into the knees of rabbits with meniscal injury, IMRCs enhanced endogenous fibrocartilage regeneration. In the dose-escalating phase I clinical trial (NCT03839238) with eighteen patients recruited, we found that intra-articular IMRCs injection in patients was safe over 12 months post-grafting. Furthermore, the effective results of magnetic resonance imaging (MRI) of meniscus repair and knee functional scores suggested that 5 × 107 cells are optimal for meniscus injury treatment. In summary, we present the first report of a phase I clinical trial using IMRCs to treat meniscus injury. Our results demonstrated that intra-articular injection of IMRCs is a safe and effective therapy by providing a permissive niche for cartilage regeneration.


Assuntos
Menisco , Transplante de Células-Tronco Mesenquimais , Animais , Humanos , Coelhos , Diferenciação Celular , Matriz Extracelular , Transplante de Células-Tronco Mesenquimais/métodos
3.
Cell Biosci ; 13(1): 201, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932828

RESUMO

BACKGROUND: Research on human pluripotent stem cells (hPSCs) has shown tremendous progress in cell-based regenerative medicine. Corneal endothelial dysfunction is associated with the loss and degeneration of corneal endothelial cells (CECs), rendering cell replacement a promising therapeutic strategy. However, comprehensive preclinical assessments of hPSC-derived CECs for this cell therapy remain a challenge. RESULTS: Here we defined an adapted differentiation protocol to generate induced corneal endothelial cells (iCECs) consistently and efficiently from clinical-grade human embryonic stem cells (hESCs) with xeno-free medium and manufactured cryopreserved iCECs. Cells express high levels of typical CECs markers and exhibit transendothelial potential properties in vitro typical of iCECs. After rigorous quality control measures, cells meeting all release criteria were available for in vivo studies. We found that there was no overgrowth or tumorigenicity of grafts in immunodeficient mice. After grafting into rabbit models, the surviving iCECs ameliorated edema and recovered corneal opacity. CONCLUSIONS: Our work provides an efficient approach for generating iCECs and demonstrates the safety and efficacy of iCECs in disease modeling. Therefore, clinical-grade iCECs are a reliable source for future clinical treatment of corneal endothelial dysfunction.

4.
Cell Discov ; 9(1): 69, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402729

RESUMO

Due to the difficulties in precisely manipulating DNA repair pathways, high-fidelity targeted integration of large transgenes triggered by double-strand breaks is inherently inefficient. Here, we exploit prime editors to devise a robust knock-in (KI) strategy named primed micro-homologues-assisted integration (PAINT), which utilizes reverse-transcribed single-stranded micro-homologues to boost targeted KIs in different types of cells. The improved version of PAINT, designated PAINT 3.0, maximizes editing efficiency and minimizes off-target integration, especially in dealing with scarless in-frame KIs. Using PAINT 3.0, we target a reporter transgene into housekeeping genes with editing efficiencies up to 80%, more than 10-fold higher than the traditional homology-directed repair method. Moreover, the use of PAINT 3.0 to insert a 2.5-kb transgene achieves up to 85% KI frequency at several therapeutically relevant genomic loci, suggesting its potential for clinical applications. Finally, PAINT 3.0 enables high-efficiency non-viral genome targeting in primary T cells and produces functional CAR-T cells with specific tumor-killing ability. Thus, we establish that the PAINT method is a powerful gene editing tool for large transgene integrations and may open new avenues for cell and gene therapies and genome writing technologies.

5.
ACS Appl Mater Interfaces ; 15(23): 27586-27599, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37271944

RESUMO

Natural cell derivates, including cell sheets (CSs) and matrix gels, have opened new opportunities to probe questions in tissue engineering and regenerative medicine. However, the potential of CSs and hydrogels generated by current protocols is still limited by the challenges of heterogeneity and weak mechanical properties. Here, we developed a 21 day long-term serum-free culture system for human embryonic stem cell (hESC)-derived immunity-and-matrix-regulatory cells (IMRCs). The CSs formed with IMRCs (IMRC-CSs) have a much greater secretion capacity for the extracellular matrix (ECM) and stronger mechanical properties than umbilical cord-derived MSCs, with a ten thousand-fold increase in elastin, a higher elastic modulus of 1500 kPa, a thicker structure of 20.59 µm, and a higher fiber count per square millimeter. The IMRC-CSs could promote corneal chemical injury repair and could be turned into injectable temperature-sensitive hydrogels for uterine adhesion repair via a decellularization process. In summary, we have established a high-strength CS platform using human pluripotent stem cells for the first time, providing a facile and scalable engineering approach for regenerative medicine.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Mesenquimais , Humanos , Diferenciação Celular , Hidrogéis/química , Engenharia Tecidual/métodos , Matriz Extracelular/química
6.
Cell Prolif ; 54(8): e13090, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34197016

RESUMO

OBJECTIVES: Derivation and maintenance of pluripotent stem cells (PSCs) generally require optimized and complex culture media, which hinders the derivation of PSCs from various species. Expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) can reprogram somatic cells into induced PSCs (iPSCs), even for species possessing no optimal culture condition. Herein, we explored whether expression of OSKM could induce and maintain pluripotency without PSC-specific growth factors and signaling inhibitors. METHODS: The culture medium of Tet-On-OSKM/Oct4-GFP mouse embryonic stem cells (ESCs) was switched from N2B27 with MEK inhibitor, GSK3ß inhibitor, and leukemia inhibitory factor (LIF) (2iL) to N2B27 with doxycycline. Tet-On-OSKM mouse embryonic fibroblast (MEF) cells were reprogrammed in N2B27 with doxycycline. Cell proliferation was traced. Pluripotency was assessed by expression of ESC marker genes, teratoma, and chimera formation. RNA-Seq was conducted to analyze gene expression. RESULTS: Via continuous expression of OSKM, mouse ESCs (OSKM-ESCs) and the resulting iPSCs (OSKM-iPSCs) reprogrammed from MEF cells propagated stably, expressed pluripotency marker genes, and formed three germ layers in teratomas. Transcriptional landscapes of OSKM-iPSCs resembled those of ESCs cultured in 2iL and were more similar to those of ESCs cultured in serum/LIF. Furthermore, OSKM-iPSCs contributed to germline transmission. CONCLUSIONS: Expression of OSKM could induce and maintain mouse pluripotency without specific culturing factors. Importantly, OSKM-iPSCs could produce gene-modified animals through germline transmission, with potential applications in other species.


Assuntos
Autorrenovação Celular , Reprogramação Celular , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Doxiciclina/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Edição de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fator Inibidor de Leucemia/farmacologia , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Teratoma/metabolismo , Teratoma/patologia , Fatores de Transcrição/genética , Transcriptoma/efeitos dos fármacos
7.
Biomed Mater ; 16(3): 035023, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33660616

RESUMO

Infertile people who suffered from loss of uterine structures and/or functions can be treated through gestational surrogacy or uterus transplantation, which remains challenging due to the ethical and social issues, the lack of donor organs as well as technical and safety risks. One promising solution is to regenerate and reconstruct a bioartificial uterus for transplantation through the engineering of uterine architecture and appropriate cellular constituents. Here, we developed a well-defined system to regenerate a functional rat uterine through recellularization of the decellularized uterine matrix (DUM) patches reseeded with human mesenchymal stem cells (hMSCs). Engraftment of the recellularized DUMs on the partially excised uteri yielded a functional rat uterus with a pregnancy rate and number of fetuses per uterine horn comparable to that of the control group with an intact uterus. Particularly, the recellularized DUMs enhanced the regeneration of traumatic uterine in vivo because of MSC regulation. The established system here will shed light on the treatment of uterine infertility with heterogeneous DUMs/cell resources through tissue engineering in the future.


Assuntos
Células-Tronco Mesenquimais/citologia , Prenhez , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Útero/metabolismo , Animais , Órgãos Bioartificiais , Sistema Livre de Células , Células Cultivadas , Matriz Extracelular/química , Feminino , Técnicas In Vitro , Gravidez , Ratos , Ratos Sprague-Dawley , Regeneração , Alicerces Teciduais/química , Útero/fisiologia
8.
Cell Prolif ; 53(10): e12903, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32926483

RESUMO

OBJECTIVE: Dysregulation of the cell cycle is associated with the progression of malignant cancer, but its precise functional contribution is unknown. MATERIALS AND METHODS: The expression of EIF1AX in breast cancer tissues was detected by qRT-PCR and immunohistochemistry staining. Colony formation and tumour xenograft assays were used to examine the tumorigenesis-associated function of EIF1AX in vitro and in vivo. RNA-Seq analysis was used to select the downstream target genes of EIF1AX. Flow cytometry, ChIP and luciferase assays were used to investigate the molecular mechanisms by which EIF1AX regulates p21 in breast cancer cells. RESULTS: EIF1AX promoted breast cancer cell proliferation by promoting the G1/S cell cycle transition. A mechanistic investigation showed that EIF1AX inhibited the expression of p21, which is an essential cell cycle regulator. We identified that the transcriptional regulation of p21 by EIF1AX was p53-independent. Clinically, EIF1AX levels were significantly elevated in breast cancer tissues, and the high level of EIF1AX was associated with lower survival rates in breast cancer patients. CONCLUSIONS: Our results imply that EIF1AX may play a key role in the incidence and promotion of breast cancer and may, thus, serve as a valuable target for breast cancer therapy.


Assuntos
Neoplasias da Mama/patologia , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fator de Iniciação 1 em Eucariotos/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Fator de Iniciação 1 em Eucariotos/antagonistas & inibidores , Fator de Iniciação 1 em Eucariotos/genética , Feminino , Fase G1 , Humanos , Camundongos , Camundongos Nus , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fase S , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cell Res ; 30(9): 794-809, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32546764

RESUMO

Lung injury and fibrosis represent the most significant outcomes of severe and acute lung disorders, including COVID-19. However, there are still no effective drugs to treat lung injury and fibrosis. In this study, we report the generation of clinical-grade human embryonic stem cells (hESCs)-derived immunity- and matrix-regulatory cells (IMRCs) produced under good manufacturing practice requirements, that can treat lung injury and fibrosis in vivo. We generate IMRCs by sequentially differentiating hESCs with serum-free reagents. IMRCs possess a unique gene expression profile distinct from that of umbilical cord mesenchymal stem cells (UCMSCs), such as higher expression levels of proliferative, immunomodulatory and anti-fibrotic genes. Moreover, intravenous delivery of IMRCs inhibits both pulmonary inflammation and fibrosis in mouse models of lung injury, and significantly improves the survival rate of the recipient mice in a dose-dependent manner, likely through paracrine regulatory mechanisms. IMRCs are superior to both primary UCMSCs and the FDA-approved drug pirfenidone, with an excellent efficacy and safety profile in mice and monkeys. In light of public health crises involving pneumonia, acute lung injury and acute respiratory distress syndrome, our findings suggest that IMRCs are ready for clinical trials on lung disorders.


Assuntos
Células-Tronco Embrionárias Humanas/imunologia , Lesão Pulmonar/terapia , Pulmão/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Animais , Células Cultivadas , Feminino , Fibrose , Haplorrinos , Células-Tronco Embrionárias Humanas/citologia , Humanos , Imunidade , Imunomodulação , Pulmão/imunologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/patologia , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL
10.
Cell Stem Cell ; 27(2): 315-325.e5, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32559418

RESUMO

Successful cloning by somatic cell nuclear transfer (SCNT) requires overcoming significant epigenetic barriers. Genomic imprinting is not generally regarded as such a barrier, although H3K27me3-dependent imprinting is differentially distributed in E6.5 epiblast and extraembryonic tissues. Here we report significant enhancement of SCNT efficiency by deriving somatic donor cells carrying simultaneous monoallelic deletion of four H3K27me3-imprinted genes from haploid mouse embryonic stem cells. Quadruple monoallelic deletion of Sfmbt2, Jade1, Gab1, and Smoc1 normalized H3K27me3-imprinted expression patterns and increased fibroblast cloning efficiency to 14% compared with a 0% birth rate from wild-type fibroblasts while preventing the placental and body overgrowth defects frequently observed in cloned animals. Sfmbt2 deletion was the most effective of the four individual gene deletions in improving SCNT. These results show that lack of H3K27me3 imprinting in somatic cells is an epigenetic barrier that impedes post-implantation development of SCNT embryos and can be overcome by monoallelic imprinting gene deletions in donor cells.


Assuntos
Histonas , Técnicas de Transferência Nuclear , Animais , Clonagem de Organismos , Desenvolvimento Embrionário/genética , Feminino , Impressão Genômica , Histonas/metabolismo , Camundongos , Gravidez , Proteínas Repressoras
11.
Cell Death Dis ; 10(10): 763, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601782

RESUMO

Hepatocytes have been successfully generated from human pluripotent stem cells (hPSCs). However, the cost-effective and clinical-grade generation of hepatocytes from hPSCs still need to be improved. In this study, we reported the production of functional hepatocytes from clinical-grade human embryonic stem cells (hESCs) under good manufacturing practice (GMP) requirements. We sequentially generated primitive streak (PS), definitive endoderm (DE), hepatoblasts and hepatocyte-like cells (HLCs) from hESCs in the different stages with completely defined reagents. During hepatoblast differentiation, dimethyl sulfoxide (DMSO), transferrin, L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (Vc-Mg), insulin, and sodium selenite were used instead of cytokines and FBS/KOSR. Then, hepatoblasts were differentiated into HLCs that had a typical hepatocyte morphology and possessed characteristics of mature hepatocytes, such as metabolic-related gene expression, albumin secretion, fat accumulation, glycogen storage, and inducible cytochrome P450 activity in vitro. HLCs integrated into the livers of Tet-uPA Rag2-/- Il2rg-/- (URG) mice, which partially recovered after transplantation. Furthermore, a series of biosafety-related experiments were performed to ensure future clinical applications. In conclusion, we developed a chemically defined system to generate qualified clinical-grade HLCs from hESCs under GMP conditions. HLCs have been proven to be safe and effective for treating liver failure. This efficient platform could facilitate the treatment of liver diseases using hESC-derived HLCs transplantation.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Endoderma/citologia , Hepatócitos/citologia , Células-Tronco Embrionárias Humanas/citologia , Ativinas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endoderma/efeitos dos fármacos , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Hepatócitos/metabolismo , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Fígado/citologia , Falência Hepática/terapia , Regeneração Hepática , Masculino , Camundongos , Camundongos Knockout , Família Multigênica , Piridinas/farmacologia , Pirimidinas/farmacologia , Transplante de Células-Tronco , Transcriptoma/genética
12.
Cell Rep ; 26(2): 407-414.e5, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30625323

RESUMO

Trophoblast stem (TS) cells are increasingly used as a model system for studying placentation and placental disorders. However, practical limitations of genetic manipulation have posed challenges for genetic analysis using TS cells. Here, we report the generation of mouse parthenogenetic haploid TS cells (haTSCs) and show that supplementation with FGF4 and inhibition of Rho-associated protein kinase (ROCK) enable the maintenance of their haploidy and developmental potential. The resulting haTSCs have 20 chromosomes, exhibit typical expression features of TS cells, possess the multipotency to differentiate into specialized trophoblast cell types, and can chimerize E13.5 and term placentas. We also demonstrate the capability of the haTSCs to undergo genetic manipulation and facilitate genome-wide screening in the trophoblast lineage. We expect that haTSCs will offer a powerful tool for studying functional genomics and placental biology.


Assuntos
Células-Tronco Embrionárias/citologia , Haploidia , Trofoblastos/citologia , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Feminino , Fator 4 de Crescimento de Fibroblastos/farmacologia , Cariótipo , Camundongos , Cultura Primária de Células/métodos , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
13.
J Mol Cell Biol ; 10(6): 515-526, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29562294

RESUMO

The generation of induced pluripotent stem cells (iPSCs) offers a great opportunity in research and regenerative medicine. The current poor efficiency and incomplete mechanistic understanding of the reprogramming process hamper the clinical application of iPSCs. MeCP2 connects histone modification and DNA methylation, which are key changes of somatic cell reprogramming. However, the role of MeCP2 in cell reprogramming has not been examined. In this study, we found that MeCP2 deficiency enhanced reprogramming efficiency and stimulated cell proliferation through regulating cell cycle protein expression in the early stage of reprogramming. MeCP2 deficiency enhanced the expression of ribosomal protein genes, thereby enhancing reprogramming efficiency through promoting the translation of cell cycle genes. In the end, MeCP2 deficiency stimulated IGF1/AKT/mTOR signaling and activated ribosomal protein gene expression. Taken together, our data indicate that MeCP2 deficiency promoted cell reprogramming through stimulating IGF1/AKT/mTOR signaling and activating ribosomal protein-mediated cell cycle gene translation in the early stage of reprogramming.


Assuntos
Reprogramação Celular , Fator de Crescimento Insulin-Like I/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Ribossômicas/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Ciclo Celular , Células Cultivadas , Feminino , Deleção de Genes , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Biossíntese de Proteínas
14.
Mol Cancer ; 17(1): 1, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29304823

RESUMO

BACKGROUND: Aberrant activation of the Wnt/ß-catenin signaling pathway is frequently observed in colorectal cancer (CRC). ß-catenin is the major Wnt signaling pathway effector and inactivation of adenomatous polyposis coli (APC) results in nuclear accumulation of ß-catenin. It has been suggested that inactivation of APC plays an important role in activation of the Wnt/ß-catenin pathway and in the progression of colorectal tumorigenesis. However, the mechanism through which APC mediates colorectal tumorigenesis is not understood. Increasing evidence suggests that the dysregulation of microRNAs (miRNAs) is involved in colorectal tumorigenesis. Although miR-494 has been reported as being an upregulated miRNA, the interplay between miR-494 and APC-mediated colorectal tumorigenesis progression remains unclear. METHODS: The expression of miR-494 in tissues from patients diagnosed with CRC was analyzed using a microarray and real-time PCR. The effects of miR-494 on cell proliferation and tumorigenesis in CRC cells were analyzed by flow cytometry, colony formation assays, BrdU incorporation assays, and CCK8 assays. The correlation between miR-494 expression and APC expression, as well as the mechanisms by which miR-494 regulates APC in CRC were also addressed. RESULTS: miR-494 was significantly upregulated in CRC tissues, and this increase was negatively associated with APC expression. APC was confirmed to be a direct target of miR-494 in CRC. Furthermore, overexpression of miR-494 induced Wnt/ß-catenin signaling by targeting APC, thus promoting CRC cell growth. CONCLUSIONS: This study provides novel insights into the role of miR-494 in controlling CRC cell proliferation and tumorigenesis, and identifies miR-494 as a potential prognostic marker and therapeutic target.


Assuntos
Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , Polipose Adenomatosa do Colo/metabolismo , Adulto , Idoso , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Via de Sinalização Wnt
16.
FASEB J ; 32(4): 1891-1902, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29222327

RESUMO

ATP is mainly generated by glycolysis in pluripotent stem cells (PSCs) and is consumed to maintain cell viability. Differences in mitochondrial activity among induced (i)PSCs with different degrees of pluripotency are poorly understood. In this study, by comparing gene expression and mitochondrial activity among iPSCs with different degrees of pluripotency, we found that mitochondrial complex I gene expression, complex I activity, and cellular ATP levels were much higher in fully pluripotent stem cell lines than in partially pluripotent stem cell lines. Actin-like protein 6a (Actl6a), a component of ATP-dependent chromatin remodeling and histone acetylation complexes, was more highly expressed in fully pluripotent stem cell lines. ATP promoted Actl6a expression and histone acetylation. Actl6a knockdown reduced the pluripotency of embryonic stem cells (ESCs), and this reduction could not be rescued by the addition of ATP. Furthermore, inhibiting ATP formation by treatment with rotenone reduced the pluripotency of ESCs. These data suggest that the abundance of mitochondrially produced ATP affects stem cell pluripotency via Actl6a-mediated histone acetylation.-Zhang, Y., Cui, P., Li, Y., Feng, G., Tong, M., Guo, L., Li, T., Liu, L., Li, W., Zhou, Q. Mitochondrially produced ATP affects stem cell pluripotency via Actl6a-mediated histone acetylation.


Assuntos
Trifosfato de Adenosina/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Acetilação , Actinas/genética , Actinas/metabolismo , Animais , Células Cultivadas , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Mitocôndrias/metabolismo , Processamento de Proteína Pós-Traducional
17.
Cell Res ; 27(9): 1100-1114, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28809392

RESUMO

METTL3 catalyzes the formation of N6-methyl-adenosine (m6A) which has important roles in regulating various biological processes. However, the in vivo function of Mettl3 remains largely unknown in mammals. Here we generated germ cell-specific Mettl3 knockout mice and demonstrated that Mettl3 was essential for male fertility and spermatogenesis. The ablation of Mettl3 in germ cells severely inhibited spermatogonial differentiation and blocked the initiation of meiosis. Transcriptome and m6A profiling analysis revealed that genes functioning in spermatogenesis had altered profiles of expression and alternative splicing. Our findings provide novel insights into the function and regulatory mechanisms of Mettl3-mediated m6A modification in spermatogenesis and reproduction in mammals.


Assuntos
Adenosina/análogos & derivados , Diferenciação Celular , Meiose , Metiltransferases/metabolismo , Espermatogônias/citologia , Espermatogônias/metabolismo , Adenosina/metabolismo , Processamento Alternativo/genética , Animais , Sequência de Bases , Diferenciação Celular/genética , Fertilidade , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Meiose/genética , Metiltransferases/genética , Camundongos Endogâmicos C57BL , Espermatogênese/genética
18.
Sci Rep ; 6: 22380, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26927897

RESUMO

To precisely determine the type and status of cells is an important prerequisite for basic researches and regenerative medicine involving stem cells or differentiated cells. However, the traditional destructive cell status examination methods have many limitations, mainly due to the heterogeneity of cells under the reprogramming or differentiation/trans-differentiation process. Here we present a new method to non-destructively determine the pluripotent level of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), or the types of differentiated cells. The method is achieved by examining the expression profiles of microRNAs (miRNAs) in cell culture medium, which show consistent abundance trend as those of the cellular miRNAs. Therefore, the method enables status examination and afterward application being achieved on the same population of cells, which will greatly facilitate cell reprogramming or differentiation/trans-differentiation related based research and clinical therapy.


Assuntos
Meios de Cultura/análise , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , MicroRNAs/análise , MicroRNAs/genética , Células A549 , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Reprogramação Celular , Humanos , Células MCF-7 , Camundongos , MicroRNAs/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA