Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 167: 115511, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37729733

RESUMO

Corydalis yanhusuo W. T. Wang, also known as yanhusuo, yuanhu, yanhu and xuanhu, is one of the herb components of many Chinese Traditional Medicine prescriptions such as Jin Ling Zi San and Yuanhu-Zhitong priscription. C. yanhusuo was traditionally used to relieve pain and motivate blood and Qi circulation. Now there has been growing interest in pharmacological effects of alkaloids, the main bioactive components of C. yanhusuo. Eighty-four alkaloids isolated from C. yanhusuo are its important bioactive components and can be characterized into protoberberine alkaloids, aporphine alkaloids, opiate alkaloids and others and proper extraction or co-administration methods modulate their contents and efficacy. Alkaloids from C. yanhusuo have various pharmacological effects on the nervous system, cardiovascular system, cancer and others through multiple molecular mechanisms such as modulating neurotransmitters, ion channels, gut microbiota, HPA axis and signaling pathways and are potential treatments for many diseases. Plenty of novel drug delivery methods such as autologous red blood cells, self-microemulsifying drug delivery systems, nanoparticles and others have also been investigated to better exert the effects of alkaloids from C. yanhusuo. This review summarized the alkaloid components of C. yanhusuo, their pharmacological effects and mechanisms, and methods of drug delivery to lay a foundation for future investigations.

2.
Eur J Pharmacol ; 932: 175236, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36044971

RESUMO

Diabetic cardiomyopathy is a diabetic complication with complicated pathophysiological changes and pathogenesis and difficult treatment. Sodium houttuyfonate is the adduct of sodium bisulfite and houttuynin, the main volatile component in Houttuynia cordata Thunb, possesses a variety of activities including multiple interventions on inhibiting ventricular remodeling. The study aims to explore effect of sodium houttuyfonate on diabetic myocardial injury and its underlying mechanisms. The diabetes model was established by intraperitoneal injection of streptozotocin at a dose of 85 mg/kg. By intragastric administration for 26 days, sodium houttuyfonate (50 and 100 mg/kg/d) reversed the abnormal serum levels of triglyceride, total cholesterol, low-density lipoprotein cholesterol and low-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio, improved the abnormal levels of serum aspartate aminotransferase and brain natriuretic peptide, reduced electrocardiogram P-R and QRS interval extension, accelerated the heart rate, decreased serum malondialdehyde content, up-regulated the myocardial energy metabolism including elevated the contents of ATP, ADP, total adenine nucleotides and phosphocreatine in myocardium, decreased AMP/ATP ratio, elevated myocardial Ca2+-Mg2+-ATPase activity, and down-regulated the mRNA expressions of AMP protein activation kinase α2 (AMPK-α2) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). In a conclusion, these results suggest that sodium houttuyfonate can improve cardiac energy metabolism disorder caused by diabetes by increasing cardiac Ca2+-Mg2+-ATPase activity and regulating AMPK signaling pathway, and then attenuates cardiac injury caused by hyperglycemia. In addition, sodium houttuyfonate also has the effects of anti-oxidation and improving abnormal levels of blood lipid.


Assuntos
Diabetes Mellitus Experimental , Traumatismos Cardíacos , Proteínas Quinases Ativadas por AMP/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Alcanos , Animais , Aspartato Aminotransferases/metabolismo , Colesterol , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Metabolismo Energético , Traumatismos Cardíacos/tratamento farmacológico , Traumatismos Cardíacos/prevenção & controle , Lipoproteínas HDL , Lipoproteínas LDL/metabolismo , Malondialdeído , Peptídeo Natriurético Encefálico/metabolismo , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosfocreatina/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Estreptozocina , Sulfitos , Triglicerídeos
3.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810045

RESUMO

Melanoma is a highly metastatic disease with an increasing rate of incidence worldwide. It is treatment refractory and has poor clinical prognosis; therefore, the development of new therapeutic agents for metastatic melanoma are urgently required. In this study, we created a lung-seeking A375LM5IF4g/Luc BRAFV600E mutant melanoma cell clone and investigated the bioefficacy of a plant sesquiterpene lactone deoxyelephantopin (DET) and its novel semi-synthetic derivative, DETD-35, in suppressing metastatic A375LM5IF4g/Luc melanoma growth in vitro and in a xenograft mouse model. DET and DETD-35 treatment inhibited A375LM5IF4g/Luc cell proliferation, and induced G2/M cell-cycle arrest and apoptosis. Furthermore, A375LM5IF4g/Luc exhibited clonogenic, metastatic and invasive abilities, and several A375LM5IF4g/Luc metastasis markers, N-cadherin, MMP2, vimentin and integrin α4 were significantly suppressed by treatment with either compound. Interestingly, DET- and DETD-35-induced Reactive Oxygen Species (ROS) generation and glutathione (GSH) depletion were found to be upstream events important for the in vitro activities, because exogenous GSH supplementation blunted DET and DETD-35 effects on A375LM5IF4g/Luc cells. DET and DETD-35 also induced mitochondrial DNA mutation, superoxide production, mitochondrial bioenergetics dysfunction, and mitochondrial protein deregulation. Most importantly, DET and DETD-35 inhibited lung metastasis of A375LM5IF4g/Luc in NOD/SCID mice through inhibiting pulmonary vascular permeability and melanoma cell (Mel-A+) proliferation, angiogenesis (VEGF+, CD31+) and EMT (N-cadherin) in the tumor microenvironment in the lungs. These findings indicate that DET and DETD-35 may be useful in the intervention of lung metastatic BRAFV600E mutant melanoma.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Asteraceae/química , Lactonas/isolamento & purificação , Lactonas/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Apoptose/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Lactonas/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Melanoma/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Proteínas Proto-Oncogênicas B-raf/genética , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/química , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Artigo em Inglês | MEDLINE | ID: mdl-32315974

RESUMO

A high-performance liquid chromatography (HPLC) method with UV detection was established and validated for the simultaneous determination of adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) in mouse myocardial tissues. After protein precipitation and compound extraction with pre-cooled perchloric acid and the supernatant was centrifuged with the pH value adjusted to 6.5-7.5, the analytes were separated on a porous graphitic carbon LC column (4.6 mm × 100 mm, 5 µm) using gradient elution with a mobile phase of 10 mmol/L borax solution, pH 9.18(A) and acetonitrile-tetrahydrofuran (1:1, v/v) (B). The LC flow rate was 0.8 mL/min; the UV detection wavelength was 254 nm and the column temperature was maintained at 35 °C. ATP, ADP, and AMP were separated and the intra-day relative standard deviations (RSDs) of peak area repeatability were 1.3-2.5% (n = 6). The correlation coefficients of the linearity between UV responses and adenosine phosphate concentrations were larger than 0.9998 in all cases, within concentration ranges of 0.71-91.6 µg/mL for ATP, 1.3-81.5 µg/mL for ADP and 1.69-108.1 µg/mL for AMP. The limits of detection were within 0.17-0.21 µg/mL. The average standard substance spiked-in recoveries were 93.6-104.7% (n = 3). The established HPLC method was successfully applied to quantitate ATP, ADP, and AMP in mouse myocardial tissues.


Assuntos
Difosfato de Adenosina/análise , Monofosfato de Adenosina/análise , Trifosfato de Adenosina/análise , Cromatografia Líquida de Alta Pressão/métodos , Miocárdio/química , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/instrumentação , Grafite/química , Masculino , Camundongos , Camundongos Endogâmicos ICR , Miocárdio/metabolismo , Porosidade
5.
Mol Cancer Ther ; 15(6): 1163-76, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27048951

RESUMO

Acquired resistance to vemurafenib develops through reactivation of RAF/MEK/ERK signaling or bypass mechanisms. Recent combination therapies such as a MEK inhibitor combined with vemurafenib show improvement in major clinical end points, but the percentage of patients with adverse toxic events is higher than with vemurafenib monotherapy and most patients ultimately relapse. Therefore, there is an urgent need to develop new antimelanoma drugs and/or adjuvant agents for vemurafenib therapy. In this study, we created a novel semiorganically modified derivative, DETD-35, from deoxyelephantopin (DET), a plant sesquiterpene lactone demonstrated as an anti-inflammatory and anti-mammary tumor agent. Our results show that DETD-35 inhibited proliferation of a panel of melanoma cell lines, including acquired vemurafenib resistance A375 cells (A375-R) established in this study, with superior activities to DET and no cytotoxicity to normal melanocytes. DETD-35 suppressed tumor growth and reduced tumor mass as effectively as vemurafenib in A375 xenograft study. Furthermore, DETD-35 also reduced tumor growth in both acquired (A375-R) and intrinsic (A2058) vemurafenib resistance xenograft models, where vemurafenib showed no antitumor activity. Notably, the combination of DETD-35 and vemurafenib exhibited the most significant effects in both in vitro and in vivo xenograft studies due to synergism of the compound and the drug. Mechanistic studies suggested that DETD-35 overcame acquired vemurafenib resistance at least in part through deregulating MEK-ERK, Akt, and STAT3 signaling pathways and promoting apoptosis of cancer cells. Overall, our results suggest that DETD-35 may be useful as a therapeutic or adjuvant agent against BRAF(V600E) mutant and acquired vemurafenib resistance melanoma. Mol Cancer Ther; 15(6); 1163-76. ©2016 AACR.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Indóis/administração & dosagem , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/tratamento farmacológico , Sulfonamidas/administração & dosagem , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Indóis/farmacologia , Lactonas/administração & dosagem , Lactonas/química , Lactonas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/genética , Camundongos , Estrutura Molecular , Mutação , Sesquiterpenos/administração & dosagem , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Neoplasias Cutâneas/genética , Sulfonamidas/farmacologia , Vemurafenib , Ensaios Antitumorais Modelo de Xenoenxerto
6.
PLoS One ; 8(10): e77626, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24143247

RESUMO

Alpinia pricei Hayata is a Formosan plant which has been popularly used as nutraceutical or folk medicine for inflammation and various disorders. An active compound of the plant rhizomes, desmethoxyyangonin (DMY), was identified in this study for its novel effect against endotoxin lipopolysaccharide (LPS)-stimulated inflammation in murine macrophages and LPS/D-galactosamine (LPS/D-GalN)-induced fulminant hepatitis in mice. DMY was observed to significantly inhibit proliferation and activation of T cells ex vivo and the activity of several pro-inflammatory mediators in vitro. DMY also protected LPS/D-GalN-induced acute hepatic damages in mice through inhibiting aminotransferases activities and infiltrations of inflammatory macrophages, neutrophils and pathogenic T cells into the liver tissues. In addition, pretreatment with DMY significantly improved the survival rate of LPS/D-GalN-treated mice to 90% (9/10), compared to LPS/D-GalN-treated group (40%, 4/10). UPLC/MS platform-based comparative metabolomics approach was used to explore the serum metabolic profile in fulminant hepatic failure (FHF) mice with or without the DMY pretreatment. The results showed that LPS/D-GalN-induced hepatic damage is likely through perturbing amino acid metabolism, which leads to decreased pyruvate formation via catalysis of aminotransferases, and DMY treatment can prevent to a certain degree of these alterations in metabolic network in mouse caused by LPS/D-GalN. Mechanistic investigation demonstrated that DMY protects LPS or LPS/D-GalN-induced damages in cell or liver tissues mainly through de-regulating IKK/NFκB and Jak2/STAT3 signaling pathways. This report provides evidence-based knowledge to support the rationale for the use of A. pricei root extract in anti-inflammation and also its new function as hepatoprotetive agent against fulminant hepatitis.


Assuntos
Hepatite/prevenção & controle , Kava/química , Pironas/farmacologia , Animais , Linhagem Celular , Citoproteção/efeitos dos fármacos , Galactosamina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatite/etiologia , Hepatite/imunologia , Hepatite/metabolismo , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Interleucina-6/biossíntese , Lipopolissacarídeos/farmacologia , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos ICR , Análise Multivariada , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA