Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biochem Biophys Res Commun ; 726: 150213, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38964186

RESUMO

The F11 receptor (F11R) gene encoding junctional adhesion molecule A has been associated with gastric cancer (GC) and colorectal cancer (CRC), in which its role and regulation remain to be further elucidated. Recently F11R was also identified as a potential target of adenosine-to-inosine (A-to-I) mediated by the adenosine deaminases acting on RNA (ADARs). Herein, using RNA-Seq and experimental validation, our current study revealed an F11R RNA trinucleotide over-edited by ADAR, with its regulation of gene expression and clinical significance in four GC and three CRC cohorts. Our results found an over-edited AAA trinucleotide in an AluSg located in the F11R 3'-untranslated region (3'-UTR), which showed editing levels correlated with elevated ADAR expression across all GC and CRC cohorts in our study. Overexpression and knockdown of ADAR in GC and CRC cells, followed by RNA-Seq and Sanger sequencing, confirmed the ADAR-mediated F11R 3'-UTR trinucleotide editing, which potentially disrupted an RBM45 binding site identified by crosslinking immunoprecipitation sequencing (CLIP-seq) and regulated F11R expression in luciferase reporter assays. Moreover, the F11R trinucleotide editing showed promising predictive performance for diagnosing GC and CRC across GC and CRC cohorts. Our findings thus highlight both the potential biological and clinical significance of an ADAR-edited F11R trinucleotide in GC and CRC, providing new insights into its application as a novel diagnostic biomarker for both cancers.


Assuntos
Adenosina Desaminase , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Edição de RNA , Proteínas de Ligação a RNA , Neoplasias Gástricas , Humanos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Estudos de Coortes , Regiões 3' não Traduzidas/genética , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Masculino , Feminino
2.
BMC Med ; 22(1): 229, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853264

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive ages. Our previous study has implicated a possible link between RNA editing and PCOS, yet the actual role of RNA editing, its association with clinical features, and the underlying mechanisms remain unclear. METHODS: Ten RNA-Seq datasets containing 269 samples of multiple tissue types, including granulosa cells, T helper cells, placenta, oocyte, endometrial stromal cells, endometrium, and adipose tissues, were retrieved from public databases. Peripheral blood samples were collected from twelve PCOS and ten controls and subjected to RNA-Seq. Transcriptome-wide RNA-Seq data analysis was conducted to identify differential RNA editing (DRE) between PCOS and controls. The functional significance of DRE was evaluated by luciferase reporter assays and overexpression in human HEK293T cells. Dehydroepiandrosterone and lipopolysaccharide were used to stimulate human KGN granulosa cells to evaluate gene expression. RESULTS: RNA editing dysregulations across multiple tissues were found to be associated with PCOS in public datasets. Peripheral blood transcriptome analysis revealed 798 DRE events associated with PCOS. Through weighted gene co-expression network analysis, our results revealed a set of hub DRE events in PCOS blood. A DRE event in the eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2:chr2:37,100,559) was associated with PCOS clinical features such as luteinizing hormone (LH) and the ratio of LH over follicle-stimulating hormone. Luciferase assays, overexpression, and knockout of RNA editing enzyme adenosine deaminase RNA specific (ADAR) showed that the ADAR-mediated editing cis-regulated EIF2AK2 expression. EIAF2AK2 showed a higher expression after dehydroepiandrosterone and lipopolysaccharide stimulation, triggering changes in the downstrean MAPK pathway. CONCLUSIONS: Our study presented the first evidence of cross-tissue RNA editing dysregulation in PCOS and its clinical associations. The dysregulation of RNA editing mediated by ADAR and the disrupted target EIF2AK2 may contribute to PCOS development via the MPAK pathway, underlining such epigenetic mechanisms in the disease.


Assuntos
Síndrome do Ovário Policístico , Edição de RNA , eIF-2 Quinase , Humanos , Síndrome do Ovário Policístico/genética , Feminino , Edição de RNA/genética , eIF-2 Quinase/genética , Adulto , Células HEK293 , Perfilação da Expressão Gênica , Relevância Clínica
3.
Acta Pharm Sin B ; 14(5): 2210-2227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799625

RESUMO

Although various anti-osteoporosis drugs are available, the limitations of these therapies, including drug resistance and collateral responses, require the development of novel anti-osteoporosis agents. Rhizoma Drynariae displays a promising anti-osteoporosis effect, while the effective component and mechanism remain unclear. Here, we revealed the therapeutic potential of Rhizoma Drynariae-derived nanovesicles (RDNVs) for postmenopausal osteoporosis and demonstrated that RDNVs potentiated osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) by targeting estrogen receptor-alpha (ERα). RDNVs, a natural product isolated from fresh Rhizoma Drynariae root juice by differential ultracentrifugation, exhibited potent bone tissue-targeting activity and anti-osteoporosis efficacy in an ovariectomized mouse model. RDNVs, effectively internalized by hBMSCs, enhanced proliferation and ERα expression levels of hBMSC, and promoted osteogenic differentiation and bone formation. Mechanistically, via the ERα signaling pathway, RDNVs facilitated mRNA and protein expression of bone morphogenetic protein 2 and runt-related transcription factor 2 in hBMSCs, which are involved in regulating osteogenic differentiation. Further analysis revealed that naringin, existing in RDNVs, was the active component targeting ERα in the osteogenic effect. Taken together, our study identified that naringin in RDNVs displays exciting bone tissue-targeting activity to reverse osteoporosis by promoting hBMSCs proliferation and osteogenic differentiation through estrogen-like effects.

4.
Int J Surg ; 110(6): 3269-3284, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38506734

RESUMO

BACKGROUND: Addressing segmental bone defects remains a complex task in orthopedics, and recent advancements have led to the development of novel drugs to enhance the bone regeneration. However, long-term oral administration can lead to malnutrition and poor patient compliance. Scaffolds loaded with medication are extensively employed to facilitate the restoration of bone defects. METHODS: Inspired by the local application of total flavonoids of Rhizoma Drynariae (TFRD) in the treatment of fracture, a novel 3D-printed HA/CMCS/PDA/TFRD scaffold with anti-infection, biodegradable and induced angiogenesis was designed, and to explore its preclinical value in segmental bone defect of tibia. RESULTS: The scaffold exhibited good degradation and drug release performance. In vitro, the scaffold extract promoted osteogenesis by enhancing bone-related gene/protein expression and mineral deposition in BMSCs. It also stimulated endothelial cell migration and promoted angiogenesis through the upregulation of specific genes and proteins associated with cell migration and tube formation. This may be attributed to the activation of the PI3k/AKT/HIF-1α pathway, facilitating the processes of osteogenesis and angiogenesis. Furthermore, the HA/CMCS/PDA/TFRD scaffold was demonstrated to alleviate infection, enhance angiogenesis, promote bone regeneration, and increase the maximum failure force of new formed bone in a rat model of segmental bone defects. CONCLUSION: Porous scaffolds loaded with TFRD can reduce infection, be biodegradable, and induce angiogenesis, presenting a novel approach for addressing tibial segmental bone defects.


Assuntos
Regeneração Óssea , Alicerces Teciduais , Animais , Regeneração Óssea/efeitos dos fármacos , Alicerces Teciduais/química , Ratos , Impressão Tridimensional , Osteogênese/efeitos dos fármacos , Porosidade , Ratos Sprague-Dawley , Tíbia/efeitos dos fármacos , Coelhos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/administração & dosagem , Masculino , Modelos Animais de Doenças , Flavonoides/farmacologia , Flavonoides/administração & dosagem , Flavonoides/química
5.
Mol Ther ; 32(4): 890-909, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38369751

RESUMO

Long-term use of conventional drugs to treat inflammatory bowel diseases (IBD) and colitis-associated cancer (CAC) has an adverse impact on the human immune system and easily leads to drug resistance, highlighting the urgent need to develop novel biotherapeutic tools with improved activity and limited side effects. Numerous products derived from plant sources have been shown to exert antibacterial, anti-inflammatory and antioxidative stress effects. Plant-derived vesicle-like nanoparticles (PDVLNs) are natural nanocarriers containing lipids, protein, DNA and microRNA (miRNA) with the ability to enter mammalian cells and regulate cellular activity. PDVLNs have significant potential in immunomodulation of macrophages, along with regulation of intestinal microorganisms and friendly antioxidant activity, as well as overcoming drug resistance. PDVLNs have utility as effective drug carriers and potential modification, with improved drug stability. Since immune function, intestinal microorganisms, and antioxidative stress are commonly targeted key phenomena in the treatment of IBD and CAC, PDVLNs offer a novel therapeutic tool. This review provides a summary of the latest advances in research on the sources and extraction methods, applications and mechanisms in IBD and CAC therapy, overcoming drug resistance, safety, stability, and clinical application of PDVLNs. Furthermore, the challenges and prospects of PDVLN-based treatment of IBD and CAC are systematically discussed.


Assuntos
Neoplasias Associadas a Colite , Colite , Doenças Inflamatórias Intestinais , Nanopartículas , Animais , Humanos , Neoplasias Associadas a Colite/complicações , Neoplasias Associadas a Colite/tratamento farmacológico , Neoplasias Associadas a Colite/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/etiologia , Anti-Inflamatórios/farmacologia , Macrófagos/metabolismo , Colite/etiologia , Colite/complicações , Mamíferos
6.
Adv Healthc Mater ; 13(9): e2303430, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37942845

RESUMO

The isolation and enrichment of specific extracellular vesicle (EV) subpopulations are essential in the context of precision medicine. However, the current methods predominantly rely on a single-positive marker and are susceptible to interference from soluble proteins or impurities. This limitation represents a significant obstacle to the widespread application of EVs in biological research. Herein, a novel approach that utilizes proximity ligation assay (PLA) and DNA-RNA hybridization are proposed to facilitate the binding of two proteins on the EV membrane in advance enabling the isolation and enrichment of intact EVs with double-positive membrane proteins followed by using functionalized magnetic beads for capture and enzymatic cleavage for isolated EVs release. The isolated subpopulations of EVs can be further utilized for cellular uptake studies, high-throughput small RNA sequencing, and breast cancer diagnosis. Hence, developing and implementing a specialized system for isolating and enriching a specific subpopulation of EVs can enhance basic and clinical research in this field.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Humanos , Feminino , Proteínas de Membrana/metabolismo , Neoplasias da Mama/metabolismo , Vesículas Extracelulares/metabolismo , RNA , Separação Imunomagnética
7.
ACS Nano ; 17(14): 13211-13223, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37440429

RESUMO

Starvation therapy has been considered a promising strategy in cancer treatment for altering the tumor microenvironment (TME) and causing a cascade of therapeutic effects. However, it is still highly challenging to establish a therapeutic strategy for precisely and potently depriving tumoral nutrition. In this study, a glucose oxidase (GOx) and thrombin-incorporated erythrocyte vesicle (EV) with cyclic (Arg-Gly-Asp) (cRGD) peptide modification, denoted as EV@RGT, were synthesized for precisely depriving tumoral nutrition and sequentially inducing second near-infrared region (NIR-II) photothermal therapy (PTT) and immune activation. The EV@RGT could specifically accumulate at the tumor site and release the enzymes at the acidic TME. The combination of GOx and thrombin exhausts tumoral glucose and blocks the nutrition supply at the same time, resulting in severe energy deficiency and reactive oxygen species (ROS) enrichment within tumor cells. Subsequently, the abundant clotted erythrocytes in tumor vessels present outstanding localized NIR-II PTT for cancer eradication owing to the hemoglobin. Furthermore, the abundant ROS generated by enhanced starvation therapy repolarizes resident macrophages into the antitumor M1 phenotype via a DNA damage-induced STING/NF-κB pathway, ultimately contributing to tumor elimination. Consequently, the engineered EV@RGT demonstrates powerful antitumor efficiency based on precise nutrition deprivation, sequential NIR-II PTT, and immune activation effect. This work provides an effective strategy for the antitumor application of enzyme-based reinforced starvation therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Espécies Reativas de Oxigênio , Trombina , Nutrientes , Eritrócitos , Glucose Oxidase , Neoplasias/terapia , Linhagem Celular Tumoral , Microambiente Tumoral
8.
J Extracell Vesicles ; 11(11): e12281, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36404468

RESUMO

Extracellular vesicles (EVs) have found diverse applications in clinical theranostics. However, the current techniques to isolate plasma EVs suffer from burdensome procedures and limited yield. Herein, we report a rapid and efficient EV isolation platform, namely, EV-FISHER, constructed from the metal-organic framework featuring cleavable lipid probes (PO4 3- -spacer-DNA-cholesterol, PSDC). The EV-FISHER baits EVs from plasma by cholesterol and separates them with an ordinary centrifuge. The captured EVs could be released and collected upon subsequent cleavage of PSDC by deoxyribonuclease I. We conclude that EV-FISHER dramatically outperforms the ultracentrifugation (UC) in terms of time (∼40 min vs. 240 min), isolation efficiency (74.2% vs. 18.1%), and isolation requirement (12,800 g vs. 135,000 g). In addition to the stable performance in plasma, EV-FISHER also exhibited excellent compatibility with downstream single-EV flow cytometry, enabling the identification of glypican-1 (GPC-1) EVs for early diagnosis, clinical stages differentiation, and therapeutic efficacy evaluation in breast cancer cohorts. This work portrays an efficient strategy to isolate EVs from complicated biological fluids with promising potential to facilitate EVs-based theranostics.


Assuntos
Vesículas Extracelulares , Ultracentrifugação/métodos , Plasma , Citometria de Fluxo
9.
BMC Anesthesiol ; 22(1): 281, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068501

RESUMO

BACKGROUND: A Y-shaped rotatable connector (YRC) for double-lumen tubes (DLT) is invented and compared with the traditional connector (Y-shaped connector, YC). METHODS: Sixty patients with ASA grade I-III, aged ≥ 18 years, who needed to insert a DLT for thoracic surgery were recruited and assigned into the YRC group (n = 30) and the YC group (n = 30) randomly. The primary endpoints included the inhaled air concentration (Fi) and the exhaled air concentration (Et) of sevoflurane before and after the switch between two-lung ventilation and one-lung ventilation at different times, positioning time, and switching time. The secondary endpoints were the internal gas volume of the two connectors, airway pressure, and the sputum suction time. RESULTS: The Et and Fi of the YRC group and the YC group were significantly different (all p < 0.05) at 5s, 10s, and 30s after the patient switched from two-lung ventilation to one-lung ventilation. The positioning time of the YRC group was less than YC group (89.75 ± 14.28 s vs 107.80 ± 14.96 s, p < 0.05), as well as the switching time (3.60 ± 1.20 s vs 9.05 ± 2.53 s, p < 0.05) and the internal gas volume (17.20 ml vs 24.12 ml). There was no difference in airway pressure and the sputum suction time in two groups. CONCLUSION: Compared with YC, YRC was beneficial for maintaining depth of anesthesia, improves efficiency for the switch between one-lung and two-lung ventilation, and shortens the tube positioning time.


Assuntos
Anestesia , Ventilação Monopulmonar , Procedimentos Cirúrgicos Torácicos , Humanos , Intubação Intratraqueal , Pulmão
10.
Phytother Res ; 36(9): 3584-3600, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35960140

RESUMO

Bone defects are difficult to heal, which conveys a heavy burden to patients' lives and their economy. The total flavonoids of Rhizoma drynariae (TFRD) can promote the osteogenesis of distraction osteogenesis. However, the dose effect is not clear, the treatment period is short, and the quality of bone formation is poor. In our study, we observed the long-term effects and dose effects of TFRD on bone defects, verified the main ingredients of TFRD in combination with network pharmacology for the first time, explored its potential mechanism, and verified these findings. We found that TFRD management for 12 weeks regulated osteogenesis and angiogenesis in rats with 4-mm tibial bone defects through the PI3K/AKT/HIF-1α/VEGF signaling pathway, especially at high doses (135 mg kg-1  d-1 ). The vascularization effect of TFRD in promoting human umbilical vein endothelial cells was inhibited by PI3K inhibitors. These results provide a reference for the clinical application of TFRD.


Assuntos
Osteogênese , Polypodiaceae , Animais , Células Endoteliais , Flavonoides/farmacologia , Humanos , Neovascularização Patológica , Fosfatidilinositol 3-Quinases , Ratos
11.
Anal Methods ; 14(10): 1041-1050, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35193142

RESUMO

Surface enhanced Raman spectroscopy (SERS) has emerged as a promising tool for the rapid and ultrasensitive recognition of trace amounts of environmental pollutants. Hierarchical SERS substrates usually show superior performance to single-component substrates but require complicated preparation protocols. Herein, a facile, robust and low-cost route for the fabrication of hierarchical SERS substrates has been reported, in which no complicated laborious protocols or sophisticated equipment is needed. In the hierarchical SERS substrate, Au nanorods were distributed onto the network of Ag nanowires through evaporation induced self-assembly. The density of the Au nanorods and Ag nanowires could be easily tailored by tuning the number of droplets of gold nanorod solution and the concentration of silver nanowire solution. The nanogaps formed between Au nanorods and Ag nanowires were able to induce a rich enhanced electromagnetic field area via localized surface plasmon resonances and surface plasmon polaritons to achieve amplification of the Raman signal. The as-prepared substrate showed high uniformity and was capable of identifying 10-12 M rhodamine 6G, 10-10 M thiram and 10-10 M crystal violet, with correlation coefficients (R2) all higher than 0.98. This approach can be employed for the detection of trace dyes, pesticides or other environmental pollutants with high sensitivity and uniformity.


Assuntos
Poluentes Ambientais , Nanopartículas Metálicas , Nanotubos , Nanofios , Praguicidas , Corantes , Nanopartículas Metálicas/química , Nanotubos/química , Praguicidas/análise
12.
Biosens Bioelectron ; 194: 113615, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507095

RESUMO

Breast cancer has become the leading cause of global cancer incidence and a serious threat to women's health. Accurate diagnosis and early treatment are of great importance to prognosis. Although clinically used diagnostic approaches can be used for cancer screening, accurate diagnosis of breast cancer is still a critical unmet need. Here, we report a 4-plex droplet digital PCR technology for simultaneous detection of four small extracellular vesicle (sEV)-derived mRNAs (PGR, ESR1, ERBB2 and GAPDH) in combination with machine learning (ML) algorithms to improve breast cancer diagnosis. We evaluate the diagnsotic results with and without the assistance of the ML models. The results indicate that ML-assisted analysis exhibits higher diagnostic performance even using a single marker for breast cancer diagnosis, and demonstrate improved diagnostic performance under the best combination of biomarkers and suitable ML diagnostic model. Therefore, multiple sEV-derived mRNAs analysis coupled with ML not only provides the best combination of markers for breast cancer diagnosis, but also significantly improves the diagnostic efficiency of breast cancer.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Vesículas Extracelulares , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Feminino , Humanos , Aprendizado de Máquina , Reação em Cadeia da Polimerase , RNA Mensageiro/genética
13.
Phytother Res ; 35(5): 2651-2664, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33452734

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In China, Yinqiao powder is widely used to prevent and treat COVID-19 patients with Weifen syndrome. In this study, the screening and verification of active ingredients, target selection and DisGeNET scoring, drug-ingredient-gene network construction, protein-protein interaction network construction, molecular docking and surface plasmon resonance (SPR) analysis, gene ontology (GO) functional analysis, gene tissue analysis, and kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were used to explore the active ingredients, targets, and potential mechanisms of Yinqiao powder in the treatment of COVID-19. We also predicted the therapeutic effect of Yinqiao powder using TCM anti-COVID-19 (TCMATCOV). Yinqiao powder has a certain therapeutic effect on COVID-19, with an intervention score of 20.16. Hesperetin, eriodictyol, luteolin, quercetin, and naringenin were the potentially effective active ingredients against COVID-19. The hub-proteins were interleukin-6 (IL-6), mitogen-activated protein kinase 3 (MAPK3), tumor necrosis factor (TNF), and tumor protein P53 (TP53). The potential mechanisms of Yinqiao powder in the treatment of COVID-19 are the TNF signaling pathway, T-cell receptor signaling pathway, Toll-like receptor signaling pathway, and MAPK signaling pathway. This study provides a new perspective for discovering potential drugs and mechanisms of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Pós , SARS-CoV-2
14.
J Orthop Surg Res ; 15(1): 463, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032636

RESUMO

BACKGROUND: Bone defects can be seen everywhere in the clinic, but it is still a challenge for clinicians. Bibliometrics tool CiteSpace is based on the principle of "co-citation analysis theory" to reveal new technologies, hotspots, and trends in the medical field. In this study, CiteSpace was used to perform co-citation analysis on authors, countries (regions) and institutions, journals and cited journals, authors and cited literature, as well as keywords to reveal leaders, cooperative institutions, and research hotspots of bone defects and predict development trends. METHOD: Data related to bone defect from 1994 to 2019 were retrieved from the Web of Science core collection; then, we use Excel to construct an exponential function to predict the number of annual publications; conduct a descriptive analysis on the top 10 journals with the largest number of publications; and perform co-citation analysis on authors, countries (regions) and institutions, journals and cited journals, authors and cited reference, and keywords using CiteSpace V5.5 and use the Burst Detection Algorithm to perform analysis on the countries (regions) and institutions and keywords, as well as cluster the keywords using log-likelihood ratio. RESULTS: A total of 5193 studies were retrieved, and the number of annual publications of bone defects showed an exponential function Y = 1×10- 70e0.0829x (R2 = 0.9778). The high-yield author was Choi Seong-Ho at Yonsei University in South Korea. The high-yielding countries were the USA and Germany, and the high-yielding institutions were the Sao Paulo University and China and the Chinese Academy of Sciences which were the emerging research countries and institutions. The research results were mainly published in the fields of dentistry, bone, and metabolism. Among them, the Journal of Dental Research and Journal of Bone and Mineral Research were high-quality journals that report bone defect research, but the most cited journal was the Clinical Orthopaedics and Related Research. Hot keywords were regeneration, repair, in vitro, bone regeneration, reconstruction, and graft. The keywords that were strongly cited in 2010-2019 were transportation, osteogenic differentiation, proliferation, and biomaterials. After 2018, proliferation, osteogenic differentiation, stromal cells, transmission, and mechanical properties have become new vocabulary. The drug delivery, vascularization, osteogenic differentiation and biomaterial properties of bone defects were expected to be further studied. CONCLUSION: The application of CiteSpace can reveal the leaders, cooperating institutions and research hotspots of bone defects and provide references for new technologies and further research directions.


Assuntos
Bibliometria , Doenças Ósseas , Publicações Periódicas como Assunto , Publicações , Pesquisa , Academias e Institutos , Animais , Humanos , Camundongos , Publicações/estatística & dados numéricos , Publicações/tendências
15.
Biosens Bioelectron ; 168: 112520, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32866725

RESUMO

Surface protein patterns of tumor-derived exosomes could be promising noninvasive diagnostic biomarkers for liquid biopsy. However, a convenient and cost-effective platform for exosomal protein profiling is still lacking. Herein, a facile fluorescent aptasensor is developed to assess exosomal tumor-associated proteins, combining aptamers, aggregation-induced emission luminogens (AIEgens), and graphene oxide (GO) as recognition elements, fluorescent dye, and the quencher, respectively. Specifically, numberous TPE-TAs could bind one aptamer and form aggregates rapidly, resulting in an amplified fluorescence signal. In the absence of tumor-derived exosomes, GO absorbs the TPE-TAs/aptamer complex, allowing fluorescence quenching. When the target exosomes are introduced, the aptamer preferentially binds with its target. Thus the TPE-TAs/aptamer complexes detach from GO surface, followed by the appearance of a "turn-on" fluorescent signal. Under the optimized conditions, the linear range of target exosomes is estimated to be 4.07 × 105 to 1.83 × 107 particles/µL (0.68-30.4 pM) with a detection limit of 3.43 × 105 particles/µL (0.57 pM). This strategy demonstrated great performance in differentiating prostate cancer from healthy individuals (AUC: 0.9790). Furthermore, by profiling three tumor-associated protein markers including epidermal growth factor receptor (EGFR), epithelial cell adhesion molecule (EpCAM), and human epidermal growth factor receptor 2 (HER2) on exosomes in a breast tumor cohort, this sensing platform diagnoses breast tumors with high efficiency (AUC: 0.9845) and exhibits a high sensitivity of 97.37% for distinguishing malignant breast cancers, where the stage I cases were detected with 92.31% sensitivity. Therefore, this aptasensor provides a promising strategy to profile tumor-derived exosomal proteins for early diagnosis in liquid biopsy.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Exossomos , Corantes Fluorescentes , Humanos , Biópsia Líquida
16.
ACS Sens ; 5(7): 2052-2060, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32594744

RESUMO

Tumor-derived exosomes carrying unique surface proteins have shown great promise as novel biomarkers for liquid biopsies. However, point-of-care analysis for tumor-derived exosomes in the blood with low-cost and easy processing is still challenging. Herein, we develop an integrated approach, homogenous magneto-fluorescent exosome (hMFEX) nanosensor, for rapid and on-site tumor-derived exosomes analysis. Tumor-derived exosomes are captured immunomagnetically, which further initiates the aptamer-triggered assembly of DNA three-way junctions in homogenous solution containing aggregation-induced emission luminogens and graphene oxide, resulting in an amplified fluorescence signal. By integrating magnetic isolation and enhanced fluorescence measurement, the hMFEX nanosensor detects tumor-derived exosomes in the dynamic range spanning 5 orders of magnitude with high specificity, and the limit of detection is 6.56 × 104 particles/µL. Analyzing tumor-derived exosomes in limited volume plasma from breast cancer patients demonstrates the excellent clinical diagnostic efficacy of the hMFEX nanosensor. This study provides new insights into the point-of-care testing of tumor-derived exosomes for cancer diagnostics.


Assuntos
Neoplasias da Mama , Exossomos , Humanos , Biópsia Líquida
17.
Prostate ; 75(12): 1264-76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26015065

RESUMO

BACKGROUND: More than 100 prostate cancer (PCa) risk-associated single nucleotide polymorphisms (SNPs) have been identified by genome wide association studies (GWAS). However, the molecular mechanisms are unclear for most of these SNPs. METHODS: All reported PCa risk-associated SNPs reaching the genome-wide significance level of P < 1 × 10(-7) (index SNPs), as well as SNPs in linkage disequilibrium (LD, r(2) ≥ 0.5) with them were cataloged. Genomic regions with potentially functional impact were also identified, including UCSC annotated coding regions (exon and snoRNA/miRNA) and regulatory regions, as well as binding regions for transcription factors (TFs), histone modifications (HMs), DNase I hypersensitivity (DHSs), and RNA Polymerase IIA (POLR2A) defined by ChIP-Seq in prostate cell lines and tissues. Enrichment analysis was performed to test whether PCa risk-associated SNPs are located in these functional regions more than expected. RESULTS: A total of 103 PCa risk-associated index SNPs and 7,244 SNPs in LD with these index SNPs were cataloged. Genomic regions with potentially functional impact, grouped in 30 different categories of functionalities, were identified. Enrichment analysis indicated that genomic regions in the following 15 categories were enriched for the PCa risk-associated SNPs: exons, CpG regions, 6 TFs (AR, ERG, FOXA1, HOXB13, CTCF, and NR3C1), 5 HMs (H3K4me1, H3K4me2, H3K4me3, H3K27AC, and H3T11P), DHSs and POLR2A. In contrast, significantly fewer PCa risk SNPs were mapped to binding regions for H3K27me3, a repressive chromatin marker. CONCLUSIONS: The PCa risk-associated SNPs discovered to date may affect PCa risk through multiple different mechanisms, especially by affecting binding regions of TFs/HMs.


Assuntos
Loci Gênicos/genética , Predisposição Genética para Doença , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único/genética , Neoplasias da Próstata/genética , Fatores de Transcrição/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Fatores de Risco
18.
Gut ; 63(1): 143-51, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23300138

RESUMO

OBJECTIVE: Tumour biomarkers are used as indicators for cancer screening and as predictors for therapeutic responses and prognoses in cancer patients. We aimed to identify genetic loci that influence concentrations of cancer antigen 19-9 (CA19-9), carcinoembryonic antigen (CEA) and α fetoprotein (AFP), and investigated the associations between the significant single nucleotide polymorphisms (SNPs) with risks of oesophageal squamous cell (OSCC), pancreatic and hepatocellular cancers. DESIGN: We carried out a genome wide association study on plasma CA19-9, CEA and AFP concentrations in 3451 healthy Han Chinese and validated the results in 10 326 individuals. Significant SNPs were further investigated in three case control studies (2031 OSCC cases and 2044 controls; 981 pancreatic cancer cases and 1991 controls; and 348 hepatocellular cancer cases and 359 controls). RESULTS: The analyses showed association peaks on three genetic loci for CA19-9 (FUT6-FUT3 at 19p13.3, FUT2-CA11 at 19q13.3 and B3GNT3 at 19p13.1; p=1.16×10(-13)-3.30×10(-290)); four for CEA (ABO at 9q34.2, FUT6 at 19p13.3, FUT2 at 19q13.3 and FAM3B at 21q22.3; p=3.33×10(-22)-5.81×10(-209)); and two for AFP (AFP at 4q11-q13 and HISPPD2A at 15q15.3; p=3.27×10(-18) and 1.28×10(-14)). These explained 17.14% of the variations in CA19-9, 8.95% in CEA and 0.57% in AFP concentrations. Significant ABO variants were also associated with risk of OSCC and pancreatic cancers, and AFP variants with risk of hepatocellular cancer (p<0.05). CONCLUSIONS: This study identified several loci associated with CA19-9, CEA and AFP concentrations. The ABO variants were associated with risk of OSCC and pancreatic cancers and AFP variants with risk of hepatocellular cancer.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma/genética , Neoplasias Esofágicas/genética , Estudo de Associação Genômica Ampla , Neoplasias Hepáticas/genética , Neoplasias Pancreáticas/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Povo Asiático , Antígeno CA-19-9/genética , Antígeno Carcinoembrionário/genética , Carcinoma/etnologia , Carcinoma Hepatocelular/etnologia , Carcinoma Hepatocelular/genética , Carcinoma de Células Escamosas/etnologia , Carcinoma de Células Escamosas/genética , Estudos de Casos e Controles , China , Neoplasias Esofágicas/etnologia , Feminino , Humanos , Modelos Lineares , Neoplasias Hepáticas/etnologia , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/etnologia , Fatores de Risco , alfa-Fetoproteínas/genética
19.
BMC Microbiol ; 13: 194, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23987307

RESUMO

BACKGROUND: Dengue virus (DENV) infection is the most important arthropod- borne viral disease in human, but antiviral therapy and approved vaccines remain unavailable due to antibody-dependent enhancement (ADE) phenomenon. Many studies showed that pre-membrane (prM)-specific antibodies do not efficiently neutralize DENV infection but potently promote ADE infection. However, most of the binding epitopes of these antibodies remain unknown. RESULTS: In the present study, we characterized a DENV cross-reactive monoclonal antibody (mAb), 4D10, that neutralized poorly but potently enhanced infection of four standard DENV serotypes and immature DENV (imDENV) over a broad range of concentration. In addition, the epitope of 4D10 was successfully mapped to amino acid residues 14 to18 of DENV1-4 prM protein using a phage-displayed peptide library and comprehensive bioinformatics analysis. We found that the epitope was DENV serocomplex cross-reactive and showed to be highly immunogenic in Balb/c mice. Furthermore, antibody against epitope peptide PL10, like 4D10, showed broad cross-reactivity and weak neutralizing activtity with four standard DENV serotypes and imDENV but significantly promoted ADE infection. These results suggested 4D10 and anti-PL10 sera were infection-enhancing antibodies and PL10 was infection-enhancing epitope. CONCLUSIONS: We mapped the epitope of 4D10 to amino acid residues 14 to18 of DENV1-4 prM and found that this epitope was infection-enhancing. These findings may provide significant implications for future vaccine design and facilitate understanding the pathogenesis of DENV infection.


Assuntos
Anticorpos Bloqueadores/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Vírus da Dengue/imunologia , Epitopos/imunologia , Proteínas do Envelope Viral/imunologia , Adulto , Animais , Biologia Computacional , Reações Cruzadas , Dengue , Mapeamento de Epitopos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Biblioteca de Peptídeos
20.
Neoplasia ; 15(4): 448-53, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23555189

RESUMO

Prostate cancer gene 3 (PCA3) is a non-coding gene specifically overexpressed in prostate cancer (PCa) that has great potential as a clinical biomarker for predicting prostate biopsy outcome. However, genetic determinants of PCA3 expression level remain unknown. To investigate the association between genetic variants and PCA3 mRNA level, a genome-wide association study was conducted in 1371 men of European descent in the REduction by DUtasteride of prostate Cancer Events trial. First-voided urine specimens containing prostate cells were obtained after digital rectal examination. The PROGENSA PCA3 assay was used to determine PCA3 score in the urinary samples. A linear regression model was used to detect the associations between (single nucleotide polymorphisms) SNPs and PCA3 score under an additive genetic model, adjusting for age and population stratification. Two SNPs, rs10993994 in ß-microseminoprotein at 10q11.23 and rs10424878 in kallikrein-related peptidase 2 at 19q13.33, were associated with PCA3 score at genome-wide significance level (P = 1.22 x 10(-9) and 1.06 x 10(-8), respectively). Men carrying the rs10993994 "T" allele or rs10424878 "A" allele had higher PCA3 score compared with men carrying rs10993994 "C" allele or rs10424878 "G" allele (ß = 1.25 and 1.24, respectively). This is the first comprehensive search for genetic determinants of PCA3 score. The novel loci identified may provide insight into the molecular mechanisms of PCA3 expression as a potential marker of PCa.


Assuntos
Antígenos de Neoplasias/urina , Biomarcadores Tumorais/urina , Neoplasias da Próstata/urina , Proteínas Secretadas pela Próstata/genética , Calicreínas Teciduais/genética , Idoso , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/genética , Ensaios Clínicos Controlados Aleatórios como Assunto , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA