Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Talanta ; 269: 125467, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042140

RESUMO

Exosomal glycoproteins play a significant role in many physiological and pathological processes. However, the detection of exosome surface glycans is currently challenged by the complexity of biological samples or the sensitivity of the methods. Herein, we prepared a novel fluorescent probe of biotin-functionalized nanocrystals (denoted as CdTe@cys-biotin) and applied it for the first time for the detection of the expression of exosomal surface glycans using a fluorescence amplification strategy. First, the dual affinity of TiO2 and CD63 aptamers of Fe3O4@TiO2-CD63 was utilized to rapidly and efficiently capture exosomes within 25 min. In this design, interference from other vesicles and soluble impurities can be avoided due to the dual recognition strategy. The chemical oxidation of NaIO4 oxidized the hydroxyl sites of exosomal surface glycans to aldehydes, which were then labeled with aniline-catalyzed biotin hydrazide. Using the high affinity between streptavidin and biotin, streptavidin-FITC and probes were successively anchored to the glycans on the exosomes. The fluorescent probe achieved the dual function of specific recognition and fluorescent labeling by modifying biotin on the surface of nanocrystals. This method showed excellent specificity and sensitivity for exosomes at concentrations ranging from 3.30 × 102 to 3.30 × 106 particles/mL, with a detection limit of 121.48 particles/mL. The fluorescent probe not only quantified exosomal surface glycans but also distinguished with high accuracy between serum exosomes from normal individuals and patients with kidney disease. In general, this method provides a powerful platform for sensitive detection of exosomes in cancer diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Compostos de Cádmio , Exossomos , Pontos Quânticos , Humanos , Fluorescência , Compostos de Cádmio/análise , Biotina/metabolismo , Estreptavidina/metabolismo , Exossomos/química , Corantes Fluorescentes/química , Telúrio , Polissacarídeos/análise , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química
2.
Analyst ; 148(14): 3392-3402, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37368458

RESUMO

In this work, titanium-rich hydrazide-linked porous organic polymers (hydrazide-POPs-Ti4+) were synthesized using hydrazine, 2,3-dihydroxyterephthalaldehyde (DHTA) and trimethyl 1,3,5-benzenetricarboxylate (TP) as the ligands. Hydrazide-POPs-Ti4+ combined with HILIC and IMAC can be used for simultaneous enrichment of glycopeptides and phosphopeptides. The detection limit of this protocol is 0.1 fmol µL-1 for glycopeptides and 0.005 fmol µL-1 for phosphopeptides, and the selectivities are 1 : 1000 and 1 : 2000 for glycopeptides and phosphopeptides, respectively. For practical bio-sample analysis, 201 glycopeptides associated with 129 glycoproteins and 26 phosphopeptides associated with 21 phosphoproteins were selectively captured from healthy human serum, and 186 glycopeptides associated with 117 glycoproteins and 60 phosphopeptides associated with 50 phosphoproteins were enriched in the serum of breast cancer patients. Gene Ontology analysis indicated that the identified glycoproteins and phosphoproteins were linked to breast cancer, including the binding of complement component C1q and low-density lipoprotein particles, protein oxidation and complement activation, suggesting that these connected pathways are probably engaged in the disease pathology of breast cancer.


Assuntos
Fosfopeptídeos , Polímeros , Humanos , Fosfopeptídeos/análise , Titânio , Glicopeptídeos/análise , Porosidade , Fosfoproteínas , Glicoproteínas
3.
Food Chem ; 412: 135562, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36716628

RESUMO

Ovalbumin (OVA) is an important protein source in our daily life. Unfortunately, the food safety problem has become more and more serious, such as protein allergy and contaminated protein. Therefore, it is necessary to detect vital proteins efficiently and rapidly. Mass spectrometry (MS) is a powerful tool for the detection of proteins. Herein, dual amino acids functionalized covalent organic frameworks containing disulfide covalent bonds (COF@SS@GC, where G is glutathione and C is cysteine) were facilely prepared for OVA enrichment through hydrophilic interaction liquid chromatography (HILIC) under physiological pH. The results showed that COF@SS@GC had displayed sensitive detection (0.1 fmol), good selectivity (OVA: BSA = 1:100), adsorption capacity (311 mg/g), stability, reproducibility, linearity, LOQ level (42 µg/mL) and recovery ratio (64.83 %) for OVA. COF@SS@GC also demonstrated satisfactory purification ability in the enrichment of egg white, indicating that COF@SS@GC had great potential in the enrichment of protein from complex samples.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Ovalbumina , Reprodutibilidade dos Testes , Interações Hidrofóbicas e Hidrofílicas , Concentração de Íons de Hidrogênio
4.
Anal Bioanal Chem ; 414(27): 7885-7895, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36136112

RESUMO

In this work, on the basis of an immobilized metal ion affinity chromatography enrichment strategy, a new kind of covalent organic framework (COF) material for enrichment of phosphorylated peptides and exosomes was successfully prepared in a facile method, and Ti4+ and Nb5+ were used as dual-functional ions (denoted as COF-S-S-COOH-Ti4+/Nb5+). With the advantage of unbiased enrichment towards phosphopeptides, COF-S-S-COOH-Ti4+/Nb5+ shows ultra-high selectivity (maximum molar ratio of ß-casein: BSA is 1:20,000) and low limit of detection (0.2 fmol). In addition, the material has an excellent phosphopeptide loading capacity (100 µg/mg) and reusability (at least seven times). Furthermore, applying the material to the actual sample, 4 phosphopeptides were selectively extracted from the serum of renal carcinoma patients. At the same time, exosomes with an intact structure in the serum of renal carcinoma patients were successfully isolated rapidly using this strategy. All experiments have shown that COF-S-S-COOH-Ti4+/Nb5+ exhibits exciting potential in practical applications.


Assuntos
Carcinoma de Células Renais , Exossomos , Neoplasias Renais , Estruturas Metalorgânicas , Caseínas/química , Cromatografia de Afinidade/métodos , Exossomos/química , Humanos , Imidazóis , Íons , Nióbio/química , Fosfopeptídeos/análise , Titânio/química
5.
J Chromatogr A ; 1679: 463406, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35963153

RESUMO

Exosomes can reflect the physiological state of parent cells and are potential disease biomarkers. In this study, we developed an innovative hydrophilic material by post-synthesis of covalent organic frameworks with dual hydrophilic groups of glutathione and cysteine (denoted as COF-S@Au@GC) to detect glycosylated exosomes in human serum. COF-S@Au@GC enriched glycosylated exosomes in human serum due to glutathione and cysteine (GC) hydrophilicity. Our results show that COF-S@Au@GC has a detection limit of 5 amol µL-1, selectivity of 1:2000, size-exclusion effect of 1:10,000, repeatability of 10 cycles, recovery of 98.3 ± 0.5%, and loading capacity of 50 mg g-1 for glycopeptides. In addition, 182 glycopeptides were detected after enrichment with COF-S@Au@GC from renal carcinoma serum, demonstrating the feasibility of enriching glycopeptides from complex biological samples. Furthermore, COF-S@Au@GC successfully captured glycosylated exosomes in the serum of renal cancer patients, with their 161 glycopeptides detected by nano liquid chromatography with tandem mass spectrometry (LC-MS/MS). This study provides a new heuristic strategy for isolating exosomes and contributes to further functional analysis of exosomes.


Assuntos
Exossomos , Estruturas Metalorgânicas , Cromatografia Líquida , Cisteína , Glutationa , Glicopeptídeos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA