Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Mar Drugs ; 22(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38921589

RESUMO

Overwhelming evidence points to an aberrant Wnt/ß-catenin signaling as a critical factor in hepatocellular carcinoma (HCC) and cervical cancer (CC) pathogenesis. Dicerandrol C (DD-9), a dimeric tetrahydroxanthenone isolated from the endophytic fungus Phomopsis asparagi DHS-48 obtained from mangrove plant Rhizophora mangle via chemical epigenetic manipulation of the culture, has demonstrated effective anti-tumor properties, with an obscure action mechanism. The objective of the current study was to explore the efficacy of DD-9 on HepG2 and HeLa cancer cells and its functional mechanism amid the Wnt/ß catenin signaling cascade. Isolation of DD-9 was carried out using various column chromatographic methods, and its structure was elucidated with 1D NMR. The cytotoxicity of DD-9 on HepG2 and HeLa cells was observed with respect to the proliferation, clonality, migration, invasion, apoptosis, cell cycle, and Wnt/ß-catenin signaling cascade. We found that DD-9 treatment significantly reduced tumor cell proliferation in dose- and time-dependent manners in HepG2 and HeLa cells. The subsequent experiments in vitro implied that DD-63 could significantly suppress the tumor clonality, metastases, and induced apoptosis, and that it arrested the cell cycle at the G0/G1 phase of HepG2 and HeLa cells. Dual luciferase assay, Western blot, and immunofluorescence assay showed that DD-9 could dose-dependently attenuate the Wnt/ß-catenin signaling by inhibiting ß-catenin transcriptional activity and abrogating ß-catenin translocated to the nucleus; down-regulating the transcription level of ß-catenin-stimulated Wnt target gene and the expression of related proteins including p-GSK3-ß, ß-catenin, LEF1, Axin1, c-Myc, and CyclinD1; and up-regulating GSK3-ß expression, which indicates that DD-9 stabilized the ß-catenin degradation complex, thereby inducing ß-catenin degradation and inactivation of the Wnt/ß-catenin pathway. The possible interaction between DD-9 and ß-catenin and GSK3-ß protein was further confirmed by molecular docking studies. Collectively, DD-9 may suppress proliferation and induce apoptosis of liver and cervical cancer cells, possibly at least in part via GSK3-ß-mediated crosstalk with the Wnt/ß-catenin signaling axis, providing insights into the mechanism for the potency of DD-9 on hepatocellular and cervical cancer.


Assuntos
Apoptose , Proliferação de Células , Via de Sinalização Wnt , Humanos , Células HeLa , Apoptose/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , beta Catenina/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Neoplasias Hepáticas/tratamento farmacológico , Xantonas/farmacologia , Xantonas/química , Xantonas/isolamento & purificação , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia
2.
Int J Surg Case Rep ; 120: 109867, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870658

RESUMO

INTRODUCTION: Solid pseudopapillary neoplasms (SPNs) of the pancreas are rare neoplasms, accounting for only 1 %-2 % of all pancreatic tumors, and predominantly affect female patients. CASE PRESENTATION: The present case report details a patient presenting to the emergency department with abdominal pain for 3 days who ultimately received a diagnosis of SPNs in the pancreatic body and tail. A contrast-enhanced computed tomography (CT) scan revealed a sizable mass arising from the pancreas, featuring an enhancing cystic component with involvement of the liver and spleen. The patient underwent subsequent exploratory laparotomy, a distal pancreatectomy, splenectomy, and partial hepatectomy. SPN diagnosis was confirmed by histopathology and immunohistochemistry with negative resection margins. CLINICAL DISCUSSION: Approximately 70 % of SPN cases are asymptomatic and are incidentally discovered. Despite advances in diagnostic modalities, preoperative diagnosis of SPNs remains a clinical challenge. Surgical management with negative resection margins remains the primary treatment approach. The recurrence rate after surgical resection has been reported to be 3 %-9 %. The prognosis for SPNs limited to the pancreas is generally favorable, with a cure rate exceeding 95 % after complete surgical resection. CONCLUSION: An SPN of the pancreas is a rare tumor observed in young female patients. Although it is classified as a malignant tumor, SPN has low malignant potential. Aggressive surgical resection, however, has proven effective in curing SPN for the majority of patients.

3.
J Agric Food Chem ; 72(20): 11503-11514, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38634424

RESUMO

The fruits of Rosa roxburghii Tratt. are edible nutritional food with high medicinal value and have been traditionally used as Chinese folk medicine for a long time. In this study, 26 triterpenoids including four new pentacyclic triterpenoids, roxbuterpenes A-D (1, 4, 5, and 24), along with 22 known analogues (2, 3, 6-23, 25, and 26), were isolated from the fruits of R. roxburghii. Their chemical structures were determined on the basis of extensive spectroscopic analyses (including IR, HRESIMS and NMR spectroscopy). The absolute configuration of roxbuterpene A (1) was determined by an X-ray crystallographic analysis. This is the first report of the crystal structure of 5/6/6/6/6-fused system pentacyclic triterpenoid. Notably, roxbuterpenes A and B (1 and 4) possessed the A-ring contracted triterpenoid and nortriterpenoid skeletons with a rare 5/6/6/6/6-fused system, respectively. Compounds 1-7, 11, 13-15, 18-20, 24, and 25 exhibited moderate or potent inhibitory activities against α-glucosidase. Compounds 2, 4, 6, 11, and 14 showed strong activities against α-glucosidase with IC50 values of 8.4 ± 1.6, 7.3 ± 2.2, 13.6 ± 1.4, 0.9 ± 0.4, and 12.5 ± 2.4 µM, respectively (positive control acarbose, 10.1 ± 0.8 µM). Compounds 13, 14, and 16 moderately inhibited the release of NO (nitric oxide) with IC50 values ranging from 25.1 ± 2.0 to 51.4 ± 3.1 µM. Furthermore, the expressions of TNF-α (tumor necrosis factor-α) and IL-6 (interleukin-6) were detected by ELISA (enzyme-linked immunosorbent assay), and compounds 13, 14, and 16 exhibited moderate inhibitory effects on TNF-α and IL-6 release in a dose-dependent manner ranging from 12.5 to 50 µM.


Assuntos
Anti-Inflamatórios , Frutas , Inibidores de Glicosídeo Hidrolases , Rosa , Triterpenos , alfa-Glucosidases , Animais , Camundongos , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Frutas/química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/imunologia , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Células RAW 264.7 , Rosa/química , Triterpenos/química , Triterpenos/farmacologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/imunologia
4.
Anal Chim Acta ; 1305: 342588, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38677842

RESUMO

BACKGROUND: Sulfur dioxide (SO2) is a significant gas signaling molecule in organisms, and viscosity is a crucial parameter of the cellular microenvironment. They are both involved in regulating many physiological processes in the human body. However, abnormalities in SO2 and viscosity levels are associated with various diseases, such as cardiovascular disease, lung cancer, respiratory diseases, neurological disorders, diabetes and Alzheimer's disease. Hence, it is essential to explore novel and efficient fluorescent probes for simultaneously monitoring SO2 and viscosity in organisms. RESULTS: We selected quinolinium salt with good stability, high fluorescence intensity, good solubility and low cytotoxicity as the fluorophore and developed a highly sensitive ratiometric probe QQD to identify SO2 and viscosity changes based on Förster resonance energy transfer/twisted intramolecular charge transfer (FRET/TICT) mechanism. Excitingly, compared with other probes for SO2 detection, QQD not only identified HSO3-/SO32- with a large Stokes shift (218 nm), low detection limit (1.87 µM), good selectivity, high energy transfer efficiency (92 %) and wide recognition range (1.87-200 µM), but also identified viscosity with a 26-fold fluorescence enhancement and good linearity. Crucially, QQD was applied to detect HSO3-/SO32- and viscosity in actual water and food samples. In addition, QQD had low toxicity and good photostability for imaging HSO3-/SO32- and viscosity in cells. These results confirmed the feasibility and reliability of QQD for HSO3-/SO32- and viscosity imaging and environmental detection. SIGNIFICANCE: We reported a unique ratiometric probe QQD for detecting HSO3-/SO32- and viscosity based on the quinolinium skeleton. In addition to detecting HSO3-/SO32- and viscosity change in actual water and food samples, QQD could also monitor the variations of HSO3-/SO32- and viscosity in cells, which provided an experimental basis for further exploration of the role of SO2 derivatives and viscosity in biological systems.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Viscosidade , Humanos , Dióxido de Enxofre/análise , Sulfitos/análise , Sulfitos/química , Limite de Detecção , Compostos de Quinolínio/química
5.
Int J Ophthalmol ; 17(4): 676-685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638258

RESUMO

AIM: To identify different metabolites, proteins and related pathways to elucidate the causes of proliferative diabetic retinopathy (PDR) and resistance to anti-vascular endothelial growth factor (VEGF) drugs, and to provide biomarkers for the diagnosis and treatment of PDR. METHODS: Vitreous specimens from patients with diabetic retinopathy were collected and analyzed by Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analyses based on 4D label-free technology. Statistically differentially expressed proteins (DEPs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway representation and protein interactions were analyzed. RESULTS: A total of 12 samples were analyzed. The proteomics results showed that a total of 58 proteins were identified as DEPs, of which 47 proteins were up-regulated and 11 proteins were down-regulated. We found that C1q and tumor necrosis factor related protein 5 (C1QTNF5), Clusterin (CLU), tissue inhibitor of metal protease 1 (TIMP1) and signal regulatory protein alpha (SIRPα) can all be specifically regulated after aflibercept treatment. GO functional analysis showed that some DEPs are related to changes in inflammatory regulatory pathways caused by PDR. In addition, protein-protein interaction (PPI) network evaluation revealed that TIMP1 plays a central role in neural regulation. In addition, CD47/SIRPα may become a key target to resolve anti-VEGF drug resistance in PDR. CONCLUSION: Proteomic analysis is an approach of choice to explore the molecular mechanisms of PDR. Our data show that multiple proteins are differentially changed in PDR patients after intravitreal injection of aflibercept, among which C1QTNF5, CLU, TIMP1 and SIRPα may become targets for future treatment of PDR and resolution of anti-VEGF resistance.

6.
Small ; : e2309026, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477698

RESUMO

Hypoxic tumor microenvironment (TME) hampers the application of oxygen (O2 )-dependent photodynamic therapy (PDT) in solid tumors. To address this problem, a biomimetic nanotheranostics (named MMCC@EM) is developed for optical molecular imaging-escorted self-oxygenation PDT. MMCC@EM is synthesized by encapsulating chlorin e6 (Ce6) and catalase (CAT) in metal-organic framework (MOF) nanoparticles with erythrocyte membrane (EM) camouflage. Based on the biomimetic properties of EM, MMCC@EM efficiently accumulates in tumor tissues. The enriched MMCC@EM achieves TME-activatable drug release, thereby releasing CAT and Ce6, and this process can be monitored through fluorescence (FL) imaging. In addition, endogenous hydrogen peroxide (H2 O2 ) will be decomposed by CAT to produce O2 , which can be reflected by the measurement of intratumoral oxygen concentration using photoacoustic (PA) imaging. Such self-oxygenation nanotheranostics effectively mitigate tumor hypoxia and improve the generation of singlet oxygen (1 O2 ). The 1 O2 disrupts mitochondrial function and triggers caspase-3-mediated cellular apoptosis. Furthermore, MMCC@EM triggers immunogenic cell death (ICD) effect, leading to an increased infiltration of cytotoxic T lymphocytes (CTLs) into tumor tissues. As a result, MMCC@EM exhibits good therapeutic effects in 4T1-tumor bearing mice under the navigation of FL/PA duplex imaging.

7.
Mar Drugs ; 22(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38535443

RESUMO

The co-culture strategy, which mimics natural ecology by constructing an artificial microbial community, is a useful tool for the activation of biosynthetic gene clusters (BGCs) to generate new metabolites, as well as to increase the yield of respective target metabolites. As part of our project aiming at the discovery of structurally novel and biologically active natural products from mangrove endophytic fungi, we selected the co-culture of a strain of Phomopsis asparagi DHS-48 with another Phomopsis genus fungus DHS-11, both endophyted in mangrove Rhizophora mangle considering the impart of the taxonomic criteria and ecological data. The competition interaction of the two strains was investigated through morphology observation and scanning electron microscopy (SEM), and it was found that the mycelia of the DHS-48 and DHS-11 compacted and tangled with each other with an interwoven pattern in the co-culture system. A new approach that integrates HPLC chromatogram, 1HNMR spectroscopy, UPLC-MS-PCA, and molecular networking enabled the targeted isolation of the induced metabolites, including three new dimeric xanthones phomoxanthones L-N (1-3), along with six known analogs (4-9). Their planar structures were elucidated by an analysis of their HRMS, MS/MS, and NMR spectroscopic data and the absolute configurations based on ECD calculations. These metabolites showed broad cytotoxic activity against the cancer cells assessed, of which compounds 7-9 displayed significant cytotoxicity towards human liver cells HepG-2 with IC50 values ranging from 4.83 µM to 12.06 µM. Compounds 1-6 exhibited weak immunosuppressive activity against the proliferation of ConA-induced (T-cell) and LPS-induced (B-cell) murine splenic lymphocytes. Therefore, combining co-cultivation with a metabolomics-guided strategy as a discovery tool will be implemented as a systematic strategy for the quick discovery of target bioactive compounds.


Assuntos
Phomopsis , Espectrometria de Massas em Tandem , Humanos , Animais , Camundongos , Cromatografia Líquida , Técnicas de Cocultura , Fungos
8.
Arch Gynecol Obstet ; 309(2): 689-697, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38051371

RESUMO

PURPOSE: The proportion of patients with poor ovarian response (POR) is increasing, but effective treatment remains a challenge. To control the hidden peaks of luteinizing hormone (LH) and premature ovulation for poor responders, this study investigated the efficacy of flexible short protocol (FSP) with gonadotropin-releasing hormone antagonist (GnRH-ant) on trigger day. METHODS: The 662 cycles of POR patients were retrospectively analyzed. The cohort was divided into control and intervention groups. The intervention group (group A) with 169 cycles received a GnRH-ant given on trigger day. The control (group B) with 493 cycles received only FSP. The clinical outcomes of the two groups were compared. RESULTS: Compared with group B, with gonadotropin-releasing hormone antagonist (GnRH-ant) on trigger day in group A the incidences of spontaneous premature ovulation decreased significantly (2.37% vs. 8.72%, P < 0.05). The number of fresh embryo-transfer cycles was 45 in group A and 117 in group B. There were no significant differences in clinical outcomes, including implantation rate, clinical pregnancy rate, live birth rate and the cumulative live birth rate (12.0% vs. 9.34%; 22.22% vs. 21.93%; 17.78% vs. 14.91%; 20.51% vs. 20%, respectively; P > 0.05) between the two group. CONCLUSION: FSP with GnRH-ant addition on trigger day had no effect on clinical outcomes, but could effectively inhibit the hidden peaks of luteinizing hormone (LH) and spontaneous premature ovulation in POR. Therefore, it is an advantageous option for POR women.


Assuntos
Hormônio Liberador de Gonadotropina , Nascimento Prematuro , Gravidez , Feminino , Humanos , Fertilização in vitro/métodos , Estudos Retrospectivos , Indução da Ovulação/métodos , Hormônio Luteinizante/farmacologia , Taxa de Gravidez , Ovulação , Nascimento Prematuro/tratamento farmacológico , Antagonistas de Hormônios/uso terapêutico , Antagonistas de Hormônios/farmacologia
9.
Acta Pharmacol Sin ; 45(2): 391-404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803139

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers in the world. The therapeutic outlook for HCC patients has significantly improved with the advent and development of systematic and targeted therapies such as sorafenib and lenvatinib; however, the rise of drug resistance and the high mortality rate necessitate the continuous discovery of effective targeting agents. To discover novel anti-HCC compounds, we first constructed a deep learning-based chemical representation model to screen more than 6 million compounds in the ZINC15 drug-like library. We successfully identified LGOd1 as a novel anticancer agent with a characteristic levoglucosenone (LGO) scaffold. The mechanistic studies revealed that LGOd1 treatment leads to HCC cell death by interfering with cellular copper homeostasis, which is similar to a recently reported copper-dependent cell death named cuproptosis. While the prototypical cuproptosis is brought on by copper ionophore-induced copper overload, mechanistic studies indicated that LGOd1 does not act as a copper ionophore, but most likely by interacting with the copper chaperone protein CCS, thus LGOd1 represents a potentially new class of compounds with unique cuproptosis-inducing property. In summary, our findings highlight the critical role of bioavailable copper in the regulation of cell death and represent a novel route of cuproptosis induction.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Cobre , Neoplasias Hepáticas/tratamento farmacológico , Ionóforos , Apoptose
10.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(6): 591-597, 2023 Nov 30.
Artigo em Chinês | MEDLINE | ID: mdl-38086712

RESUMO

Robotic puncture system has been widely used in modern minimally invasive surgery, which usually uses hand-eye calibration to calculate the spatial relationship between the robot and the optical tracking system. However, the hand-eye calibration process is time-consuming and sensitive to environmental changes, which makes it difficult to guarantee the puncture accuracy of the robot. This study proposes an uncalibrated positioning method for puncture robot based on optical navigation. The method divides the target path positioning into two stages, angle positioning and position positioning, and designs angle image features and position image features respectively. The corresponding image Jacobian matrix is constructed based on the image features and updated by online estimation with a cubature Kalman filter to drive the robot to perform target path localization. The target path positioning results show that the method is more accurate than the traditional hand-eye calibration method and saves significant preoperative preparation time by eliminating the need for calibration.


Assuntos
Dispositivos Ópticos , Procedimentos Cirúrgicos Robóticos , Robótica , Calibragem , Procedimentos Cirúrgicos Minimamente Invasivos
11.
BMC Womens Health ; 23(1): 599, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37957634

RESUMO

OBJECTIVE: To study the outcome of human papillomavirus (HPV) infection in women with cervical pathology results of non-cervical intraepithelial neoplasia (CIN) or cervical cancer and positive high-risk HPV test, as well as analyze the associated risk factors affecting the outcome of infection. METHODS: To investigate the outcome of high-risk (HR)-HPV infection in the female genital tract and analyze the associated risk factors affecting their outcome, a total of 196 women with positive HR-HPV test results and non-CIN or cervical cancer cervical pathology results were selected for follow-up at the Cervical Disease Clinic of the Obstetrics and Gynecology Hospital, Zhejiang University School of Medicine from January 2017 to March 2020. The follow-up interval was every 6 months, and both cervical cytology (TCT) and HR-HPV testing were performed at each follow-up visit. If the cervical cytology results were normal upon recheck and the HR-HPV test was negative, the woman was considered to be cleared of the HPV infection and was entered into the routine cervical screening population. When the repeat HR-HPV test remained positive after 6 months, the woman was defined as having a persistent HR-HPV infection. If HR-HPV persisted but the TCT results were normal, follow-up was continued. If HR-HPV persisted and the TCT results were abnormal, a colposcopy-guided biopsy was performed immediately. In this situation, if the histological results were still non-CIN or cervical cancer, the follow-up was continued. If the histological results confirmed the development of CIN or invasive cancer, then enter another study follow-up to further track its development and outcome, and the woman commenced the treatment process. The HPV infection clearance time was analyzed by the Kaplan-Meier method, and the comparison of the HPV clearance rate and infection clearance time between each of the different groups was performed using aχ2 test or Fisher's exact test, as appropriate. After the univariate analysis, several significant factors were included in the Cox model and independent risk factors were analyzed. RESULTS: A total of 163 women were enrolled in this study. The median age was 40.0 years (22-67 years) and the median follow-up time was 11.5 months (6-31 months). The spontaneous clearance rate of HR-HPV infection was 51.5%, and the median time to viral clearance was 14.5 months. Age and the initial viral load were high risk factors affecting the spontaneous clearance of HR-HPV infection. The factors significantly associated with HPV clearance rate and time to HPV clearance consisted of menopause and full-term delivery (P < 0.05). CONCLUSIONS: In women with normal or low-grade lesions on the cell smear, the spontaneous clearance rate of HR-HPV infection was 51.5% and the time to clearance was 14.5 months. Age and the initial viral load were independent associated factors affecting the spontaneous clearance of HR-HPV infection in the female genital tract. These findings suggest that non-young women or those with high viral loads have a higher rate of persistent HR-HPV infection. Thus, intensive screening should be recommended.


Assuntos
Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Gravidez , Feminino , Humanos , Adulto , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/epidemiologia , Papillomavirus Humano , Detecção Precoce de Câncer , Displasia do Colo do Útero/diagnóstico , Esfregaço Vaginal , Colposcopia , Papillomaviridae
12.
Chem Biodivers ; 20(12): e202301665, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37968250

RESUMO

Gelsegansymines A (1) and B (2), two new indole alkaloids along with six known analogues (3-8) were isolated from the aerial parts of Gelsemium elegans. Their structures were elucidated by means of spectroscopic techniques. Structurally, compounds 1 and 2 possessed the rare cage-like gelsedine skeleton hybrid with bicyclic monoterpenoid. The anti-inflammatory activities of isolated compounds (1-3) were tested on LPS induced RAW264.7 cells. Under the treated concentration without toxicity for cells, the cytokines levels of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were evaluated by Griess method and enzyme-linked immunosorbent assay (ELISA). The results showed that compounds 1-3 exhibited anti-inflammatory activities with dose-dependent manner range from 12.5 to 50 µmol/L. Furthermore, the inhibitory activities of compounds 1 and 2 on receptor activator of NF-κB ligand (RANKL) induced osteoclast formation were tested in vitro. Compounds 1 and 2 at 5 µmol/L exhibited the significant inhibitory effect on the osteoclastogenesis induced by RANKL. This work reported the anti-inflammatory and osteoclast inhibitory activities of new monoterpenoid indole hybrids, which may inspire the further light on the related traditional application research of G. elegans.


Assuntos
Gelsemium , Osteoclastos , Animais , Camundongos , Gelsemium/química , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Fator de Necrose Tumoral alfa
13.
Int Immunopharmacol ; 125(Pt A): 111102, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922567

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory bowel disease, which is characterized by inflammation, with many symptoms including diarrhea, abdominal pain, bloody stool, and weight loss. It is difficult to completely cure and promising therapeutic drug candidates are urgently needed. Citropten, a coumarin-like compound found in traditional Chinese medicine such as Finger Citron Fruit, notopterygium root and citrus peel, has been shown to inhibit the proliferation of tumor cells, protect against depression and suppress the production of inflammatory mediators. In this study, we demonstrated that citropten could alleviate dextran sulfate sodium (DSS)-induced acute and recurrent colitis in mice, with significant improvement in body weight loss, disease activity index, shortened colon length and histological changes. Moreover, citropten dramatically decreased the production of pro-inflammatory mediators in colon tissues and effectively suppressed the proportion of Th17 cells in spleen. Mechanism investigations revealed that citropten significantly inhibited the activation of NF-κB and JAK/STAT3 signaling pathways, thus leading to decreased inflammation, Th17 cells and alleviative colitis. These findings provide novel insights into the anti-colitis effect of citropten, which may be a promising drug candidate for treatment of IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/patologia , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Modelos Animais de Doenças , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/patologia , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo
14.
Helicobacter ; 28(6): e13030, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871913

RESUMO

The microbiota actively and extensively participates in the regulation of human metabolism, playing a crucial role in the development of metabolic diseases. Helicobacter pylori (H. pylori), when colonizing gastric epithelial cells, not only induces local tissue inflammation or malignant transformation but also leads to systemic and partial changes in host metabolism. These shifts can be mediated through direct contact, toxic components, or indirect immune responses. Consequently, they influence various molecular metabolic events that impact nutritional status and iron absorption in the host. Unraveling the intricate and diverse molecular interaction links between H. pylori and human metabolism modulation is essential for understanding pathogenesis mechanisms and developing targeted treatments for related diseases. However, significant challenges persist in comprehensively understanding the complex association networks among H. pylori itself, the infected host's status, the host microbiome, and the immune response. Previous metabolomics research has indicated that H. pylori infection and eradication may selectively shape the metabolite and microbial profiles of gastric lesions. Yet, it remains largely unknown how these diverse metabolic pathways, including isovaleric acid, cholesterol, fatty acids, and phospholipids, specifically modulate gastric carcinogenesis or affect the host's serum metabolism, consequently leading to the development of metabolic-associated diseases. The direct contribution of H. pylori to metabolisms still lacks conclusive evidence. In this review, we summarize recent advances in clinical evidence highlighting associations between chronic H. pylori infection and metabolic diseases, as well as its potential molecular regulatory patterns.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Doenças Metabólicas , Humanos , Helicobacter pylori/fisiologia , Infecções por Helicobacter/complicações , Estômago/patologia , Homeostase
15.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834459

RESUMO

A series of novel derivatives of 18ß-glycyrrhetinic acid (GA) were synthesized by introducing aromatic or heterocyclic structures to extend the side chain, thereby enhancing their interaction with amino acid residues in the active pocket of the target protein. These compounds were structurally characterized using 1H NMR, 13C NMR, and HRMS. The compounds were subsequently evaluated for their inhibitory effects on HIV-1 protease and cell viability in the human cancer cell lines K562 and HeLa and the mouse cancer cell line CT26. Towards HIV-1 protease, compounds 28 and 32, which featured the introduction of heterocyclic moieties at the C3 position of GA, exhibited the highest inhibition, with inhibition rates of 76% and 70.5%, respectively, at 1 mg/mL concentration. Further molecular docking suggests that a 3-substituted polar moiety would be likely to enhance the inhibitory activity against HIV-1 protease. As for the anti-proliferative activities of the GA derivatives, incorporation of a thiazole heterocycle at the C3- position in compound 29 significantly enhanced the effect against K562 cells with an IC50 value of 8.86 ± 0.93 µM. The introduction of electron-withdrawing substituents on the C3-substituted phenyl ring augmented the anti-proliferative activity against Hela and CT26 cells. Compound 13 exhibited the highest inhibitory activity against Hela cells with an IC50 value of 9.89 ± 0.86 µM, whereas compound 7 exerted the strongest inhibition against CT26 cells with an IC50 value of 4.54 ± 0.37 µM. These findings suggest that further modification of GA is a promising path for developing potent novel anti-HIV and anticancer therapeutics.


Assuntos
Antineoplásicos , Animais , Camundongos , Humanos , Células HeLa , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Antivirais/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Linhagem Celular Tumoral
16.
Curr Top Med Chem ; 23(26): 2452-2487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37642181

RESUMO

BACKGROUND: The use of ethnic medicinal plants has revitalized wide popularity in Africa, Asia, and most of the world because of the energy consumption barriers increase of synthetic drugs. Gelsemium is a traditional genus of plants with famous cultural and medicinal significance in Southeast Asia and North America. Three species are reported from the genus Gelsemium, including Gelsemium elegans (Gardn. & Camp.) Benth., Gelsemium sempervirens (L.) J.St.-Hil., and Gelsemium rankinii Small. Among them, G. elegans is well known for its toxicity and is used as a traditional remedy for skin problems, neuralgia, fractures, and cancer. The first record of the toxic medicine G. elegans is the Chinese herbal medicine classically known as Shen-Nong Ben-Cao Jing. In the legend, the Shennong emperor was poisoned by G. elegans, hence, it is also wellknown as Duan Chang Cao in China. In addition, G. sempervirens tincture is also used in the treatment of inflammation of the spinalcolumn, and diminishes blood to the cerebrospinal centers. INTRODUCTION: This review aims to provide up-to-date information on Gelsemium and its endophytic fungi on their traditional uses, phytochemistry, pharmacology, and toxicology. Mechanism studies regarding the detoxification profile of Gelsemium are also reviewed. METHODS: For this updated review, the literature survey and search were performed on the scientific databases PubMed, ScienceDirect, Wiley, China CNKI, Web of Science, SciFinder, and Google Scholar using the relevant keywords. RESULTS: The plants of the genus Gelsemium are all reported as rich sources of monoterpene indole alkaloids. Previous phytochemical studies published more than 200 alkaloids from Gelsemium and its endophytic fungi, which have attracted considerable attention from pharmaceutists and phytochemists due to their diverse and complex structures. The bioactivities of Gelsemium phytoconstituents studied using various chemical methods are summarized and described herein. Considering the huge influence of Gelsemium regarding its traditional applications, the activities of isolated compounds were focused on the anti-tumor, anti-inflammatory, analgesic and antianxiety, immunostimulatory, and immunosuppressive properties, which provide evidence supporting the ethnopharmacological effectiveness of the genus Gelsemium. Unlike all previous reviews of genus Gelsemium, to the best of our knowledge, the recently reported natural products from its endophytic fungi are first time summarized in this review. CONCLUSION: It is clearly suggested from the literature information that the structures and biological activities of Gelsemium have a wide range of attraction from folk to the community of scholars. However, as a highly toxic genus, the work on the detoxification mechanism and toxicology of Gelsemium is urgently needed before entering clinical research. It is noteworthy that the discussion about the relationship between structural and biological activities are a valuable topic of expectation, while the structural modification for active or toxic components may shed light on toxicological breakthrough. Besides the compounds from the plants of genus Gelsemium, the recently reported natural products from its endophytic fungi may provide a supplement for its ethnomedicinal uses and ethnological validity.


Assuntos
Gelsemium , Plantas Medicinais , Fitoterapia/métodos , Extratos Vegetais/química , Etnofarmacologia , Plantas Medicinais/química , Compostos Fitoquímicos/farmacologia , Anti-Inflamatórios não Esteroides
17.
World J Gastroenterol ; 29(12): 1875-1898, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37032730

RESUMO

BACKGROUND: Centipedes have been used to treat tumors for hundreds of years in China. However, current studies focus on antimicrobial and anticoagulation agents rather than tumors. The molecular identities of antihepatoma bioactive components in centipedes have not yet been extensively investigated. It is a challenge to isolate and characterize the effective components of centipedes due to limited peptide purification technologies for animal-derived medicines. AIM: To purify, characterize, and synthesize the bioactive components with the strongest antihepatoma activity from centipedes and determine the antihepatoma mechanism. METHODS: An antihepatoma peptide (scolopentide) was isolated and identified from the centipede scolopendra subspinipes mutilans using a combination of enzymatic hydrolysis, a Sephadex G-25 column, and two steps of high-performance liquid chromatography (HPLC). Additionally, the CCK8 assay was used to select the extracted fraction with the strongest antihepatoma activity. The molecular weight of the extracted scolopentide was characterized by quadrupole time of flight mass spectrometry (QTOF MS), and the sequence was matched by using the Mascot search engine. Based on the sequence and molecular weight, scolopentide was synthesized using solid-phase peptide synthesis methods. The synthetic scolopentide was confirmed by MS and HPLC. The antineoplastic effect of extracted scolopentide was confirmed by CCK8 assay and morphological changes again in vitro. The antihepatoma effect of synthetic scolopentide was assessed by the CCK8 assay and Hoechst staining in vitro and tumor volume and tumor weight in vivo. In the tumor xenograft experiments, qualified model mice (male 5-week-old BALB/c nude mice) were randomly divided into 2 groups (n = 6): The scolopentide group (0.15 mL/d, via intraperitoneal injection of synthetic scolopentide, 500 mg/kg/d) and the vehicle group (0.15 mL/d, via intraperitoneal injection of normal saline). The mice were euthanized by cervical dislocation after 14 d of continuous treatment. Mechanistically, flow cytometry was conducted to evaluate the apoptosis rate of HepG2 cells after treatment with extracted scolopentide in vitro. A Hoechst staining assay was also used to observe apoptosis in HepG2 cells after treatment with synthetic scolopentide in vitro. CCK8 assays and morphological changes were used to compare the cytotoxicity of synthetic scolopentide to liver cancer cells and normal liver cells in vitro. Molecular docking was performed to clarify whether scolopentide tightly bound to death receptor 4 (DR4) and DR5. qRT-PCR was used to measure the mRNA expression of DR4, DR5, fas-associated death domain protein (FADD), Caspase-8, Caspase-3, cytochrome c (Cyto-C), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), x-chromosome linked inhibitor-of-apoptosis protein and Cellular fas-associated death domain-like interleukin-1ß converting enzyme inhibitory protein in hepatocarcinoma subcutaneous xenograft tumors from mice. Western blot assays were used to measure the protein expression of DR4, DR5, FADD, Caspase-8, Caspase-3, and Cyto-C in the tumor tissues. The reactive oxygen species (ROS) of tumor tissues were tested. RESULTS: In the process of purification, characterization and synthesis of scolopentide, the optimal enzymatic hydrolysis conditions (extract ratio: 5.86%, IC50: 0.310 mg/mL) were as follows: Trypsin at 0.1 g (300 U/g, centipede-trypsin ratio of 20:1), enzymolysis temperature of 46 °C, and enzymolysis time of 4 h, which was superior to freeze-thawing with liquid nitrogen (IC50: 3.07 mg/mL). A peptide with the strongest antihepatoma activity (scolopentide) was further purified through a Sephadex G-25 column (obtained A2) and two steps of HPLC (obtained B5 and C3). The molecular weight of the extracted scolopentide was 1018.997 Da, and the peptide sequence was RAQNHYCK, as characterized by QTOF MS and Mascot. Scolopentide was synthesized in vitro with a qualified molecular weight (1018.8 Da) and purity (98.014%), which was characterized by MS and HPLC. Extracted scolopentide still had an antineoplastic effect in vitro, which inhibited the proliferation of Eca-109 (IC50: 76.27 µg/mL), HepG2 (IC50: 22.06 µg/mL), and A549 (IC50: 35.13 µg/mL) cells, especially HepG2 cells. Synthetic scolopentide inhibited the proliferation of HepG2 cells (treated 6, 12, and 24 h) in a concentration-dependent manner in vitro, and the inhibitory effects were the strongest at 12 h (IC50: 208.11 µg/mL). Synthetic scolopentide also inhibited the tumor volume (Vehicle vs Scolopentide, P = 0.0003) and weight (Vehicle vs Scolopentide, P = 0.0022) in the tumor xenograft experiment. Mechanistically, flow cytometry suggested that the apoptosis ratios of HepG2 cells after treatment with extracted scolopentide were 5.01% (0 µg/mL), 12.13% (10 µg/mL), 16.52% (20 µg/mL), and 23.20% (40 µg/mL). Hoechst staining revealed apoptosis in HepG2 cells after treatment with synthetic scolopentide in vitro. The CCK8 assay and morphological changes indicated that synthetic scolopentide was cytotoxic and was significantly stronger in HepG2 cells than in L02 cells. Molecular docking suggested that scolopentide tightly bound to DR4 and DR5, and the binding free energies were-10.4 kcal/mol and-7.1 kcal/mol, respectively. In subcutaneous xenograft tumors from mice, quantitative real-time polymerase chain reaction and western blotting suggested that scolopentide activated DR4 and DR5 and induced apoptosis in SMMC-7721 Liver cancer cells by promoting the expression of FADD, caspase-8 and caspase-3 through a mitochondria-independent pathway. CONCLUSION: Scolopentide, an antihepatoma peptide purified from centipedes, may inspire new antihepatoma agents. Scolopentide activates DR4 and DR5 and induces apoptosis in liver cancer cells through a mitochondria-independent pathway.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Quilópodes , Peptídeos , Animais , Humanos , Masculino , Camundongos , Antineoplásicos/análise , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Quilópodes/química , Quilópodes/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Camundongos Nus , Simulação de Acoplamento Molecular , Peptídeos/análise , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Tripsina , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Injeções Intraperitoneais , Células Hep G2
18.
J Ethnopharmacol ; 311: 116474, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37031823

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The imbalance between M1-and M2-polarized macrophages is one of the major pathophysiological changes in RA. Therefore, targeted macrophage polarization may be an effective therapy for RA. Koumine, an alkaloid monomer with the highest content and low toxicity in Gelsemium elegans Benth., has the effect of treating RA by playing an immunomodulatory role by influencing various immune cells. However, whether koumine affects macrophage polarization in RA and the associated molecular mechanisms remain unknown. AIM OF THE STUDY: To investigate the mechanism of the anti-RA effect of koumine on macrophage polarization. MATERIALS AND METHODS: The effect of koumine on macrophage polarization was investigated in vivo and in vitro. We first explored the effects of koumine on AIA rats and detected the levels of M1/M2 macrophage polarization markers in the spleen by western blotting. Then, we explored the regulatory effect of koumine on M1/M2 macrophage polarization and the effect on the PI3K/AKT signaling pathway in vitro. Finally, we verified the effects of koumine on macrophage polarization in CIA mice. RESULTS: We found that koumine alleviated symptoms, including relieving pain, reducing joint redness and swelling in AIA rats and restoring the M1/M2 macrophage balance in vivo. Interestingly, koumine had an inhibitory effect on both M1 and M2 macrophage polarization in vitro, but it had a stronger inhibitory effect on M1 macrophage. In a mixed polarization experiment, koumine mainly inhibited M1 macrophage polarization and had an inhibitory effect on the PI3K/AKT signaling pathway. Finally, we found that koumine had therapeutic effects on CIA mice, regulated macrophage polarization and inhibited the PI3K/AKT signaling pathway. CONCLUSIONS: Our results reveal that koumine regulates macrophage polarization through the PI3K/AKT signaling pathway. This may be one of the important mechanisms of its anti-RA effect, which provides a theoretical and scientific basis for the possible clinical application of koumine.


Assuntos
Artrite Reumatoide , Proteínas Proto-Oncogênicas c-akt , Ratos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Macrófagos
19.
Molecules ; 28(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985503

RESUMO

Two new monoterpenoid indole alkaloids, gelselegandines F (1) and G (2), were isolated from the aerial parts of Gelsemium elegans. Their structures were elucidated by means of spectroscopic techniques and quantum chemical calculations. The ECD calculations were conducted at the B3LYP/6-311G(d,p) level and NMR calculations were carried out using the Gauge-Including Atomic Orbitals (GIAO) method. Structurally, the two new compounds possessed rare, cage-like, monoterpenoid indole skeletons. All isolated compounds and the total alkaloids extract were tested for cytotoxicity against four different tumor cell lines. The total alkaloids extract of G. elegans exhibited significant antitumor activity with IC50 values ranging from 32.63 to 82.24 ug/mL. In order to discover anticancer leads from the active extraction, both new indole compounds (1-2) were then screened for cytotoxicity. Interestingly, compound 2 showed moderate cytotoxicity against K562 leukemia cells with an IC50 value of 57.02 uM.


Assuntos
Antineoplásicos , Gelsemium , Alcaloides de Triptamina e Secologanina , Estrutura Molecular , Gelsemium/química , Indóis , Alcaloides de Triptamina e Secologanina/farmacologia , Alcaloides de Triptamina e Secologanina/química , Antineoplásicos/farmacologia , Extratos Vegetais/farmacologia , Alcaloides Indólicos/química
20.
Cells ; 12(6)2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36980165

RESUMO

Due to their low immunogenicity, high biocompatibility and ready availability in large quantities, plant-derived vesicles extracts have attracted considerable interest as a novel nanomaterial in tumor therapy. Bitter melon, a medicinal and edible plant, has been reported to exhibit excellent antitumor effects. It is well-documented that breast cancer gravely endangers women's health, and more effective therapeutic agents must be urgently explored. Therefore, we investigated whether bitter melon-derived vesicles extract (BMVE) has antitumor activity against breast cancer. Ultracentrifugation was used to isolate BMVE with a typical "cup-shaped" structure and an average size of approximately 147 nm from bitter melon juice. The experimental outcomes indicate that 4T1 breast cancer cells could efficiently internalize BMVE, which shows apparent anti-proliferative and migration-inhibiting effects. In addition, BMVE also possesses apoptosis-inducing effects on breast cancer cells, which were achieved by stimulating the production of reactive oxygen species (ROS) and disrupting mitochondrial function. Furthermore, BMVE could dramatically inhibit tumor growth in vivo with negligible adverse effects. In conclusion, BMVE exhibits a pronounced antitumor effect on 4T1 breast cancer cells, which has great potential for use in tumor therapy.


Assuntos
Neoplasias da Mama , Momordica charantia , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Momordica charantia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA