Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Hepatology ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557414

RESUMO

BACKGROUND AND AIMS: Epigenetic reprogramming and escape from terminal differentiation are poorly understood enabling characteristics of liver cancer. Keratin 19 (KRT19), classically known to form the intermediate filament cytoskeleton, is a marker of stemness and worse prognosis in liver cancer. This study aimed to address the functional roles of KRT19 in liver tumorigenesis and to elucidate the underlying mechanisms. APPROACH AND RESULTS: Using multiplexed genome editing of hepatocytes in vivo, we demonstrated that KRT19 promoted liver tumorigenesis in mice. Cell fractionation revealed a previously unrecognized nuclear fraction of KRT19. Tandem affinity purification identified histone deacetylase 1 and REST corepressor 1, components of the corepressor of RE-1 silencing transcription factor (CoREST) complex as KRT19-interacting proteins. KRT19 knockout markedly enhanced histone acetylation levels. Mechanistically, KRT19 promotes CoREST complex formation by enhancing histone deacetylase 1 and REST corepressor 1 interaction, thus increasing the deacetylase activity. ChIP-seq revealed hepatocyte-specific genes, such as hepatocyte nuclear factor 4 alpha ( HNF4A ), as direct targets of KRT19-CoREST. In addition, we identified forkhead box P4 as a direct activator of aberrant KRT19 expression in liver cancer. Furthermore, treatment of primary liver tumors and patient-derived xenografts in mice suggest that KRT19 expression has the potential to predict response to histone deacetylase 1 inhibitors especially in combination with lenvatinib. CONCLUSIONS: Our data show that nuclear KRT19 acts as a transcriptional corepressor through promoting the deacetylase activity of the CoREST complex, resulting in dedifferentiation of liver cancer. These findings reveal a previously unrecognized function of KRT19 in directly shaping the epigenetic landscape in cancer.

2.
Sci Adv ; 10(9): eadj2102, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416816

RESUMO

Cytosolic double-stranded DNA surveillance by cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) signaling triggers cellular senescence, autophagy, biased mRNA translation, and interferon-mediated immune responses. However, detailed mechanisms and physiological relevance of STING-induced senescence are not fully understood. Here, we unexpectedly found that interferon regulatory factor 3 (IRF3), activated during innate DNA sensing, forms substantial endogenous complexes in the nucleus with retinoblastoma (RB), a key cell cycle regulator. The IRF3-RB interaction attenuates cyclin-dependent kinase 4/6 (CDK4/6)-mediated RB hyperphosphorylation that mobilizes RB to deactivate E2 family (E2F) transcription factors, thereby driving cells into senescence. STING-IRF3-RB signaling plays a notable role in hepatic stellate cells (HSCs) within various murine models, pushing activated HSCs toward senescence. Accordingly, IRF3 global knockout or conditional deletion in HSCs aggravated liver fibrosis, a process mitigated by the CDK4/6 inhibitor. These findings underscore a straightforward yet vital mechanism of cGAS-STING signaling in inducing cellular senescence and unveil its unexpected biology in limiting liver fibrosis.


Assuntos
Neoplasias da Retina , Retinoblastoma , Camundongos , Animais , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , DNA/metabolismo , Interferons/metabolismo
3.
Nat Cell Biol ; 26(1): 86-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172614

RESUMO

The Hippo pathway has important roles in organ development, tissue homeostasis and tumour growth. Its downstream effector TAZ is a transcriptional coactivator that promotes target gene expression through the formation of biomolecular condensates. However, the mechanisms that regulate the biophysical properties of TAZ condensates to enable Hippo signalling are not well understood. Here using chemical crosslinking combined with an unbiased proteomics approach, we show that FUS associates with TAZ condensates and exerts a chaperone-like effect to maintain their proper liquidity and robust transcriptional activity. Mechanistically, the low complexity sequence domain of FUS targets the coiled-coil domain of TAZ in a phosphorylation-regulated manner, which ensures the liquidity and dynamicity of TAZ condensates. In cells lacking FUS, TAZ condensates transition into gel-like or solid-like assembles with immobilized TAZ, which leads to reduced expression of target genes and inhibition of pro-tumorigenic activity. Thus, our findings identify a chaperone-like function of FUS in Hippo regulation and demonstrate that appropriate biophysical properties of transcriptional condensates are essential for gene activation.


Assuntos
Proteínas Serina-Treonina Quinases , Transativadores , Transativadores/genética , Transativadores/metabolismo , Ativação Transcricional , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Linhagem Celular Tumoral
4.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260423

RESUMO

ZNRF3 and RNF43 are closely related transmembrane E3 ubiquitin ligases with significant roles in development and cancer. Conventionally, their biological functions have been associated with regulating WNT signaling receptor ubiquitination and degradation. However, our proteogenomic studies have revealed EGFR as the most negatively correlated protein with ZNRF3/RNF43 mRNA levels in multiple human cancers. Through biochemical investigations, we demonstrate that ZNRF3/RNF43 interact with EGFR via their extracellular domains, leading to EGFR ubiquitination and subsequent degradation facilitated by the E3 ligase RING domain. Overexpression of ZNRF3 reduces EGFR levels and suppresses cancer cell growth in vitro and in vivo, whereas knockout of ZNRF3/RNF43 stimulates cell growth and tumorigenesis through upregulated EGFR signaling. Together, these data highlight ZNRF3 and RNF43 as novel E3 ubiquitin ligases of EGFR and establish the inactivation of ZNRF3/RNF43 as a driver of increased EGFR signaling, ultimately promoting cancer progression. This discovery establishes a connection between two fundamental signaling pathways, EGFR and WNT, at the level of cytoplasmic membrane receptor, uncovering a novel mechanism underlying the frequent co-activation of EGFR and WNT signaling in development and cancer.

5.
Dev Cell ; 59(1): 48-63.e8, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38103553

RESUMO

Loss of TGF-ß growth-inhibitory responses is a hallmark of human cancer. However, the molecular mechanisms underlying the TGF-ß resistance of cancer cells remain to be fully elucidated. Splicing factor proline- and glutamine-rich (SFPQ) is a prion-like RNA-binding protein that is frequently upregulated in human cancers. In this study, we identified SFPQ as a potent suppressor of TGF-ß signaling. The ability of SFPQ to suppress TGF-ß responses depends on its prion-like domain (PrLD) that drives liquid-liquid phase separation (LLPS). Mechanistically, SFPQ physically restrained Smad4 in its condensates, which excluded Smad4 from the Smad complex and chromatin occupancy and thus functionally dampened Smad-dependent transcriptional responses. Accordingly, SFPQ deficiency or loss of phase separation activities rendered human cells hypersensitive to TGF-ß responses. Together, our data identify an important function of SFPQ through LLPS that suppresses Smad transcriptional activation and TGF-ß tumor-suppressive activity.


Assuntos
Neoplasias , Príons , Humanos , Ativação Transcricional , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Ligação a RNA
6.
Signal Transduct Target Ther ; 8(1): 120, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36959211

RESUMO

Loss of TGF-ß-mediated growth suppression is a major contributor to the development of cancers, best exemplified by loss-of-function mutations in genes encoding components of the TGF-ß signaling pathway in colorectal and pancreatic cancers. Alternatively, gain-of-function oncogene mutations can also disrupt antiproliferative TGF-ß signaling. However, the molecular mechanisms underlying oncogene-induced modulation of TGF-ß signaling have not been extensively investigated. Here, we show that the oncogenic BCR-ABL1 of chronic myelogenous leukemia (CML) and the cellular ABL1 tyrosine kinases phosphorylate and inactivate Smad4 to block antiproliferative TGF-ß signaling. Mechanistically, phosphorylation of Smad4 at Tyr195, Tyr301, and Tyr322 in the linker region interferes with its binding to the transcription co-activator p300/CBP, thereby blocking the ability of Smad4 to activate the expression of cyclin-dependent kinase (CDK) inhibitors and induce cell cycle arrest. In contrast, the inhibition of BCR-ABL1 kinase with Imatinib prevented Smad4 tyrosine phosphorylation and re-sensitized CML cells to TGF-ß-induced antiproliferative and pro-apoptotic responses. Furthermore, expression of phosphorylation-site-mutated Y195F/Y301F/Y322F mutant of Smad4 in Smad4-null CML cells enhanced antiproliferative responses to TGF-ß, whereas the phosphorylation-mimicking Y195E/Y301E/Y322E mutant interfered with TGF-ß signaling and enhanced the in vivo growth of CML cells. These findings demonstrate the direct role of BCR-ABL1 tyrosine kinase in suppressing TGF-ß signaling in CML and explain how Imatinib-targeted therapy restored beneficial TGF-ß anti-growth responses.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Fosforilação , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Tirosina/metabolismo
7.
JCI Insight ; 8(3)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752205

RESUMO

TGF-ß signaling is crucial for modulating osteoarthritis (OA), and protein phosphatase magnesium-dependent 1A (PPM1A) has been reported as a phosphatase of SMAD2 and regulates TGF-ß signaling, while the role of PPM1A in cartilage homeostasis and OA development remains largely unexplored. In this study, we found increased PPM1A expression in OA chondrocytes and confirmed the interaction between PPM1A and phospho-SMAD2 (p-SMAD2). Importantly, our data show that PPM1A KO substantially protected mice treated with destabilization of medial meniscus (DMM) surgery against cartilage degeneration and subchondral sclerosis. Additionally, PPM1A ablation reduced the cartilage catabolism and cell apoptosis after the DMM operation. Moreover, p-SMAD2 expression in chondrocytes from KO mice was higher than that in WT controls with DMM induction. However, intraarticular injection with SD-208, repressing TGF-ß/SMAD2 signaling, dramatically abolished protective phenotypes in PPM1A-KO mice. Finally, a specific pharmacologic PPM1A inhibitor, Sanguinarine chloride (SC) or BC-21, was able to ameliorate OA severity in C57BL/6J mice. In summary, our study identified PPM1A as a pivotal regulator of cartilage homeostasis and demonstrated that PPM1A inhibition attenuates OA progression via regulating TGF-ß/SMAD2 signaling in chondrocytes and provided PPM1A as a potential target for OA treatment.


Assuntos
Condrócitos , Osteoartrite , Proteína Fosfatase 2C , Proteína Smad2 , Fator de Crescimento Transformador beta , Animais , Camundongos , Condrócitos/metabolismo , Camundongos Endogâmicos C57BL , Osteoartrite/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2C/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Proteína Smad2/metabolismo
8.
EMBO J ; 42(4): e111549, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36598329

RESUMO

YAP/TAZ transcriptional co-activators play pivotal roles in tumorigenesis. In the Hippo pathway, diverse signals activate the MST-LATS kinase cascade that leads to YAP/TAZ phosphorylation, and subsequent ubiquitination and proteasomal degradation by SCFß-TrCP . When the MST-LATS kinase cascade is inactive, unphosphorylated or dephosphorylated YAP/TAZ translocate into the nucleus to mediate TEAD-dependent gene transcription. Hippo signaling-independent YAP/TAZ activation in human malignancies has also been observed, yet the mechanism remains largely elusive. Here, we report that the ubiquitin E3 ligase HERC3 can promote YAP/TAZ activation independently of its enzymatic activity. HERC3 directly binds to ß-TrCP, blocks its interaction with YAP/TAZ, and thus prevents YAP/TAZ ubiquitination and degradation. Expression levels of HERC3 correlate with YAP/TAZ protein levels and expression of YAP/TAZ target genes in breast tumor cells and tissues. Accordingly, knockdown of HERC3 expression ameliorates tumorigenesis of breast cancer cells. Our results establish HERC3 as a critical regulator of the YAP/TAZ stability and a potential therapeutic target for breast cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Mama , Humanos , Feminino , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transativadores/genética , Transativadores/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Sinalização YAP , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Ubiquitinação , Neoplasias da Mama/genética , Ubiquitinas/metabolismo , Ligases/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
9.
Trends Biochem Sci ; 47(12): 1059-1072, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35810076

RESUMO

The transforming growth factor ß (TGF-ß) superfamily controls a wide spectrum of biological processes in metazoans, including cell proliferation, apoptosis, differentiation, cell-fate determination, and embryonic development. Deregulation of TGF-ß-Smad signaling contributes to developmental anomalies and a variety of disorders and diseases such as tumorigenesis, fibrotic disorders, and immune diseases. In cancer, TGF-ß has dual effects through its antiproliferative and prometastatic actions. At the cellular level, TGF-ß functions mainly through the canonical Smad-dependent pathway in a cell type-specific and context-dependent manner. Accumulating evidence has demonstrated that ubiquitination plays a vital role in regulating TGF-ß-Smad signaling. We summarize current progress on ubiquitination (Ub) and the ubiquitin ligases that regulate TGF-ß-Smad signaling.


Assuntos
Fenômenos Biológicos , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Transdução de Sinais/fisiologia
10.
Nat Commun ; 13(1): 3486, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35710796

RESUMO

Mitochondria generate ATP and play regulatory roles in various cellular activities. Cancer cells often exhibit fragmented mitochondria. However, the underlying mechanism remains elusive. Here we report that a mitochondrial protein FUN14 domain containing 2 (FUNDC2) is transcriptionally upregulated in primary mouse liver tumors, and in approximately 40% of human hepatocellular carcinoma (HCC). Importantly, elevated FUNDC2 expression inversely correlates with patient survival, and its knockdown inhibits liver tumorigenesis in mice. Mechanistically, the amino-terminal region of FUNDC2 interacts with the GTPase domain of mitofusin 1 (MFN1), thus inhibits its activity in promoting fusion of outer mitochondrial membrane. As a result, loss of FUNDC2 leads to mitochondrial elongation, decreased mitochondrial respiration, and reprogrammed cellular metabolism. These results identified a mechanism of mitochondrial fragmentation in cancer through MFN1 inhibition by FUNDC2, and suggested FUNDC2 as a potential therapeutic target of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , GTP Fosfo-Hidrolases/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Dinâmica Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo
11.
Sci Adv ; 8(25): eabn5683, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35731873

RESUMO

Mechanistic study and precision treatment of primary liver cancer (PLC) are hindered by marked heterogeneity, which is challenging to recapitulate in any given liver cancer mouse model. Here, we report the generation of 25 mouse models of PLC by in situ genome editing of hepatocytes recapitulating 25 single or combinations of human cancer driver genes. These mouse tumors represent major histopathological types of human PLCs and could be divided into three human-matched molecular subtypes based on transcriptomic and proteomic profiles. Phenotypical characterization identified subtype- or genotype-specific alterations in immune microenvironment, metabolic reprogramming, cell proliferation, and expression of drug targets. Furthermore, single-cell analysis and expression tracing revealed spatial and temporal dynamics in expression of pyruvate kinase M2 (Pkm2). Tumor-specific knockdown of Pkm2 by multiplexed genome editing reversed the Warburg effect and suppressed tumorigenesis in a genotype-specific manner. Our study provides mouse PLC models with defined genetic drivers and characterized phenotypical heterogeneity suitable for mechanistic investigation and preclinical testing.

12.
Nat Cell Biol ; 24(5): 766-782, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35501370

RESUMO

Innate DNA sensing via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING-PKR-like endoplasmic reticulum kinase (PERK)-eIF2α pathway, a previously unknown cGAS-STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1-IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING-PERK-eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS-STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING-PERK pathway in treating fibrotic diseases.


Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Senescência Celular , DNA/metabolismo , Retículo Endoplasmático/metabolismo , Fibrose , Humanos , Imunidade Inata , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Biossíntese de Proteínas , Piruvato Quinase/metabolismo , Transdução de Sinais/fisiologia , eIF-2 Quinase
13.
ACS Chem Biol ; 17(4): 768-775, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35302367

RESUMO

The development of a simple and cost-effective method to map the distribution of RNA polymerase II (RNPII) genome-wide at a high resolution is highly beneficial to study cellular transcriptional activity. Here we report a mutation-based and enrichment-free global chromatin run-on sequencing (mGRO-seq) technique to locate active RNPII sites genome-wide at near-base resolution. An adenosine triphosphate (ATP) analog named N6-allyladenosine triphosphate (a6ATP) was designed and could be incorporated into nascent RNAs at RNPII-located positions during a chromatin run-on reaction. By treatment of the run-on RNAs with a mild iodination reaction and subjection of the products to reverse transcription into complementary DNA (cDNA), base mismatch occurs at the original a6A incorporation sites, thus making the RNPII locations detected in the high-throughput cDNA sequencing. The mGRO-seq yields both the map of RNPII sites and the chromatin RNA abundance and holds great promise for the study of single-cell transcriptional activity.


Assuntos
RNA Polimerases Dirigidas por DNA , RNA , Trifosfato de Adenosina , Cromatina , DNA Complementar , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
14.
Sci Adv ; 8(8): eabk1826, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35196077

RESUMO

An unlimited source of human pancreatic ß cells is in high demand. Even with recent advances in pancreatic differentiation from human pluripotent stem cells, major hurdles remain in large-scale and cost-effective production of functional ß cells. Here, through chemical screening, we demonstrate that the bromodomain and extraterminal domain (BET) inhibitor I-BET151 can robustly promote the expansion of PDX1+NKX6.1+ pancreatic progenitors (PPs). These expandable PPs (ePPs) maintain pancreatic progenitor cell status in the long term and can efficiently differentiate into functional pancreatic ß (ePP-ß) cells. Notably, transplantation of ePP-ß cells rapidly ameliorated diabetes in mice, suggesting strong potential for cell replacement therapy. Mechanistically, I-BET151 activates Notch signaling and promotes the expression of key PP-associated genes, underscoring the importance of epigenetic and transcriptional modulations for lineage-specific progenitor self-renewal. In summary, our studies achieve the long-term goal of robust expansion of PPs and represent a substantial step toward unlimited supplies of functional ß cells for biomedical research and regenerative medicine.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Diabetes Mellitus/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Transativadores/genética , Transativadores/metabolismo
15.
Nat Commun ; 13(1): 838, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149681

RESUMO

The proteasome recognizes ubiquitinated proteins and can also edit ubiquitin marks, allowing substrates to be rejected based on ubiquitin chain topology. In yeast, editing is mediated by deubiquitinating enzyme Ubp6. The proteasome activates Ubp6, whereas Ubp6 inhibits the proteasome through deubiquitination and a noncatalytic effect. Here, we report cryo-EM structures of the proteasome bound to Ubp6, based on which we identify mutants in Ubp6 and proteasome subunit Rpt1 that abrogate Ubp6 activation. The Ubp6 mutations define a conserved region that we term the ILR element. The ILR is found within the BL1 loop, which obstructs the catalytic groove in free Ubp6. Rpt1-ILR interaction opens the groove by rearranging not only BL1 but also a previously undescribed network of three interconnected active-site-blocking loops. Ubp6 activation and noncatalytic proteasome inhibition are linked in that they are eliminated by the same mutations. Ubp6 and ubiquitin together drive proteasomes into a unique conformation associated with proteasome inhibition. Thus, a multicomponent allosteric switch exerts simultaneous control over both Ubp6 and the proteasome.


Assuntos
Endopeptidases/química , Endopeptidases/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Citoplasma , Endopeptidases/genética , Complexo de Endopeptidases do Proteassoma/genética , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo
16.
Gut ; 71(11): 2313-2324, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34996827

RESUMO

OBJECTS: The incidence of hepatocellular carcinoma (HCC) shows an obvious male dominance in rodents and humans. We aimed to identify the key autosomal liver-specific sex-related genes and investigate their roles in hepatocarcinogenesis. DESIGN: Two HCC cohorts (n=551) with available transcriptome and metabolome data were used. Class comparisons of omics data and ingenuity pathway analysis were performed to explore sex-related molecules and their associated functions. Functional assays were employed to investigate roles of the key candidates, including cellular assays, molecular assays and multiple orthotopic HCC mouse models. RESULTS: A global comparison of multiple omics data revealed 861 sex-related molecules in non-tumour liver tissues between female and male HCC patients, which denoted a significant suppression of cancer-related diseases and functions in female liver than male. A member of cytochrome P450 family, CYP39A1, was one of the top liver-specific candidates with significantly higher levels in female vs male liver. In HCC tumours, CYP39A1 expression was dramatically reduced in over 90% HCC patients. Exogenous CYP39A1 significantly blocked tumour formation in both female and male mice and partially reduced the sex disparity of hepatocarcinogenesis. The HCC suppressor role of CYP39A1 did not rely on its known P450 enzyme activity but its C-terminal region, by which CYP39A1 impeded the transcriptional activation activity of c-Myc, leading to a significant inhibition of hepatocarcinogenesis. CONCLUSIONS: The liver-specific CYP39A1 with female-preferential expression was a strong suppressor of HCC development. Strategies to up-regulate CYP39A1 might be promising methods for HCC treatment in both women and men in future.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Hepatocelular/patologia , Sistema Enzimático do Citocromo P-450/genética , Família , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Esteroide Hidroxilases
17.
Am J Cancer Res ; 12(12): 5516-5531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36628288

RESUMO

Transforming Growth Factor beta (TGF-ß) is a multifunctional cytokine that regulates cell proliferation, differentiation, and apoptosis. Dysregulation of the TGF-ß signaling is one of the major mechanisms underlying tumor progression. We have previously reported that anaplastic lymphoma kinase (ALK) phosphorylates Smad4 at Tyr95, which compromises the DNA-binding ability of Smad4 and thus renders ALK-positive cancer cells resistant to TGF-ß tumor-suppressive action. In this study, we demonstrated that tyrosine phosphatase PTPN2 positively regulated TGF-ß signaling through dephosphorylating Smad4 at the Tyr95 site. Both in vitro and cell-based assays revealed that PTPN2 bound to and dephosphorylated Smad4, thereby preserving the DNA-binding ability of Smad4. Furthermore, overexpression of PTPN2 restored TGF-ß transcriptional and growth inhibitory responses in ALK-positive cancer cells. Consistently, Spermidine, an activator of PTPN2, also promoted TGF-ß-induced gene expression, apoptosis, and anti-proliferation effect. Taken together, we revealed that PTPN2 functioned as a tumor suppressor to antagonize the inhibitory effect of tyrosine phosphorylation of Smad4 and to ensure the proper TGF-ß growth inhibitory signaling in cancer cells.

18.
Cancer Res ; 81(19): 5007-5020, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34362797

RESUMO

Transforming growth factor ß (TGFß) is prometastatic in advanced cancers and its biological activities are mainly mediated by the Smad family of proteins. Smad4 is the central signal transducer and transcription factor in the TGFß pathway, yet the underlying mechanisms that govern transcriptional activities of Smad4 are not fully understood. Here, we show that AMBRA1, a member of the DDB1 and CUL4-associated factor (DCAF) family of proteins, serves as the substrate receptor for Smad4 in the CUL4-RING (CRL4) ubiquitin ligase complex. The CRL4-AMBRA1 ubiquitin ligase mediates nonproteolytic polyubiquitylation of Smad4 to enhance its transcriptional functions. Consequently, AMBRA1 potentiated TGFß signaling and critically promoted TGFß-induced epithelial-to-mesenchymal transition, migration, and invasion of breast cancer cells. Mouse models of breast cancer demonstrated that AMBRA1 promotes metastasis. Collectively, these results show that CRL4-AMBRA1 facilitates TGFß-driven metastasis by increasing Smad4 polyubiquitylation, suggesting AMBRA1 may serve as a new therapeutic target in metastatic breast cancer. SIGNIFICANCE: This study identifies AMBRA1 as a novel regulator of TGFß signaling and breast cancer metastasis, supporting further exploration of AMBRA1 as a target for cancer therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Camundongos , Mutação , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Proteína Smad4/genética , Especificidade por Substrato , Ubiquitinação
19.
Mol Cell ; 81(20): 4147-4164.e7, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34453890

RESUMO

Missense mutations of the tumor suppressor Neurofibromin 2 (NF2/Merlin/schwannomin) result in sporadic to frequent occurrences of tumorigenesis in multiple organs. However, the underlying pathogenicity of NF2-related tumorigenesis remains mostly unknown. Here we found that NF2 facilitated innate immunity by regulating YAP/TAZ-mediated TBK1 inhibition. Unexpectedly, patient-derived individual mutations in the FERM domain of NF2 (NF2m) converted NF2 into a potent suppressor of cGAS-STING signaling. Mechanistically, NF2m gained extreme associations with IRF3 and TBK1 and, upon innate nucleic acid sensing, was directly induced by the activated IRF3 to form cellular condensates, which contained the PP2A complex, to eliminate TBK1 activation. Accordingly, NF2m robustly suppressed STING-initiated antitumor immunity in cancer cell-autonomous and -nonautonomous murine models, and NF2m-IRF3 condensates were evident in human vestibular schwannomas. Our study reports phase separation-mediated quiescence of cGAS-STING signaling by a mutant tumor suppressor and reveals gain-of-function pathogenesis for NF2-related tumors by regulating antitumor immunity.


Assuntos
Imunidade Inata , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Neoplasias/metabolismo , Neurofibromina 2/metabolismo , Nucleotidiltransferases/metabolismo , Evasão Tumoral , Animais , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Neurofibromina 2/genética , Nucleotidiltransferases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
20.
Acta Biomater ; 131: 1-15, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34133982

RESUMO

Synthetic modified messenger RNA (mRNA) has manifested great potentials for therapeutic applications such as vaccines and gene therapies, with the recent mRNA vaccines for global pandemic COVID-19 (corona virus disease 2019) attracting the tremendous attention. The chemical modifications and delivery vehicles of synthetic mRNAs are the two key factors for their in vivo therapeutic applications. Chemical modifications like nucleoside methylation endow the synthetic mRNAs with high stability and reduced stimulation of innate immunity. The development of scalable production of synthetic mRNA and efficient mRNA formulation and delivery strategies in recent years have remarkably advanced the field. It is worth noticing that we had limited knowledge on the roles of mRNA modifications in the past. However, the last decade has witnessed not only new discoveries of several naturally occurring mRNA modifications but also substantial advances in understanding their roles on regulating gene expression. It is highly necessary to reconsider the therapeutic system made by synthetic modified mRNAs and delivery vectors. In this review, we will mainly discuss the roles of various chemical modifications on synthetic mRNAs, briefly summarize the progresses of mRNA delivery strategies, and highlight some latest mRNA therapeutics applications including infectious disease vaccines, cancer immunotherapy, mRNA-based genetic reprogramming and protein replacement, mRNA-based gene editing. STATEMENT OF SIGNIFICANCE: The development of synthetic mRNA drug holds great promise but lies behind small molecule and protein drugs largely due to the challenging issues regarding its stability, immunogenicity and potency. In the last 15 years, these issues have beensubstantially addressed by synthesizing chemically modified mRNA and developing powerful delivery systems; the mRNA therapeutics has entered an exciting new era begun with the approved mRNA vaccines for the COVID-19 infection disease. Here, we provide recent progresses in understanding the biological roles of various RNA chemical modifications, in developing mRNA delivery systems, and in advancing the emerging mRNA-based therapeutic applications, with the purpose to inspire the community to spawn new ideas for curing diseases.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Imunoterapia , RNA Mensageiro/genética , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA