Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1161334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089641

RESUMO

Plant kingdoms are facing increasingly harsh environmental challenges marked by the coexposure of salinity and pollution in the pedosphere and elevated CO2 and temperature in the atmosphere due to the rapid acceleration of industrialization and global climate change. In this study, we deployed a hydroponics-based experiment to explore the individual and mutual effects of different temperatures (low temperature, T1: 23°C; high temperature, T2: 27°C) and CO2 concentrations (ambient CO2: 360 ppm; medium CO2: 450 ppm; high CO2: 700 ppm) on the uptake and translocation of sodium chloride (NaCl, 0.0, 0.2, 0.6, and 1.1 g Na/L) and cadmium nitrate (Cd(NO3)2·4H2O, 0.0, 0.2, 1.8, and 5.4 mg Cd/L) by rice seedlings. The results indicated that Cd and Na exposure significantly (P< 0.05) inhibited plant growth, but T2 and medium/high CO2 alleviated the effects of Cd and Na on plant growth. Neither significant synergistic nor antagonistic effects of Cd and Na were observed, particularly not at T1 or high CO2. At increasing temperatures, relative growth rates increased despite higher concentrations of Cd and Na in both rice roots and shoots. Similarly, higher CO2 stimulated the growth rate but resulted in significantly lower concentrations of Na, while the Cd concentration was highest at medium CO2. Coexposure experiments suggested that the concentration of Cd in roots slightly declined with additional Na and more at T2. Overall, our preliminary study suggested that global climate change may alter the distribution of mineral and toxic elements in rice plants as well as the tolerance of the plants.

2.
Environ Sci Pollut Res Int ; 30(1): 287-297, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35900629

RESUMO

Cadmium (Cd) pollution has become a major threat to crop production and quality globally. The heavy metal P1B-ATPases (HMAs) play a crucial role in metal transport in plants. In the present study, we investigated the interaction in metal transport by HMAs between Cd and mineral elements in rice plants. Rice seedlings were treated with cadmium nitrate either in the nutrient solution ("Cd+M") or in the ultrapure water ("Cd-M"). Result showed that phytotoxicity of Cd to rice seedlings was evident from both Cd treatments, judged by relative growth rate (RGR), where more severe repression (p < 0.05) of RGR was observed in the "Cd-M" treatments than the "Cd+M" treatments. More Cd (p < 0.05) was accumulated in rice tissues from the "Cd-M" treatments than the "Cd+M" treatments, while there is a significant difference (p < 0.05) in distribution and translocation of mineral elements in rice tissues between the "Cd+M" and the "Cd-M" treatments. RT-qPCR analysis displayed that the expression patterns of HMAs related genes were quite different between "Cd+M" and "Cd-M" treatments, suggesting their different regulatory effects during the transport of Cd and mineral elements within rice plants. The competition in metal transport by HMAs mainly occurs between Cd and micro-elements of Zn and Cu in rice tissues during Cd exposure. Overall, this study provides new evidence to clarify the different translocation mechanisms of HMAs in metal transport between Cd and mineral elements in rice seedlings during Cd exposure.


Assuntos
Metais Pesados , Oryza , Cádmio/análise , Adenosina Trifosfatases/metabolismo , Metais Pesados/análise , Minerais/metabolismo , Plântula/metabolismo
3.
Polymers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236108

RESUMO

Plant polysaccharides are widely found in nature and have a variety of biological activities, including immunomodulatory, antioxidative, and antitumoral. Due to their low toxicity and easy absorption, they are widely used in the health food and pharmaceutical industries. However, low activity hinders the wide application. Chemical modification is an important method to improve plant polysaccharides' physical and chemical properties. Through chemical modification, the antioxidant and immunomodulatory abilities of polysaccharides were significantly improved. Some polysaccharides with poor water solubility also significantly improved their water solubility after modification. Chemical modification of plant polysaccharides has become an important research direction. Research on the modification of plant polysaccharides is currently increasing, but a review of the various modification studies is absent. This paper reviews the research progress of chemical modification (sulfation, phosphorylation, acetylation, selenization, and carboxymethylation modification) of land plant polysaccharides (excluding marine plant polysaccharides and fungi plant polysaccharides) during the period of January 2012-June 2022, including the preparation, characterization, and biological activity of modified polysaccharides. This study will provide a basis for the deep application of land plant polysaccharides in food, nutraceuticals, and pharmaceuticals.

4.
Chemosphere ; 306: 135500, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35779683

RESUMO

Thiocyanate (SCN-) is a sulfur-containing pollutant, which is frequently detected in irrigation water and has negative effects on plant growth and crop yields. Uptake and assimilation of exogenous SCN- in rice plants was evident, in which two metabolic pathways, carbonyl sulfide (COS) and cyanate (CNO), are activated. Hydrogen sulfide (H2S) is an important concomitant derived from detoxification of exogenous SCN- in rice plants, which may cause coupling action on the endogenous source of H2S from sulfur metabolism. Since H2S has dual regulatory effects, the fate of H2S derived from assimilation of SCN- in plants is critical for clarifying the inclusiveness of H2S in various physiological activities. In fact, application of exogenous H2S not only positively changed the root phenotype traits of SCN--treated seedlings, but also effectively mitigated the toxic effects of SCN- in rice seedlings by stimulating the process of the PSII repair cycle. In this study, it is tempting to analyze and clarify the flux of the concomitant production of H2S from assimilation of exogenous SCN- into the innate pool, which may function in signaling regulation and other physiological processes in rice plants. This study would update our understanding of the fate of H2S derived from assimilation of SCN- in plants and provide new insights into the affirmative actions of H2S in direct proximity to SCN- exposure.


Assuntos
Sulfeto de Hidrogênio , Oryza , Sulfeto de Hidrogênio/metabolismo , Oryza/metabolismo , Plantas/metabolismo , Plântula , Enxofre/metabolismo , Tiocianatos/farmacologia
5.
Environ Geochem Health ; 44(10): 3279-3296, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34529245

RESUMO

Mining activities are well-known sources of potentially toxic elements (PTEs) pollution, which often jeopardize the biosphere, pedosphere, and hydrosphere. However, the soil and groundwater pollution caused by active private mining activities has long been neglected. This study investigated the occurrence of PTEs and cyanide (CN) in agricultural soils, mine tailings, and groundwater nearby the cyanide baths from a private gold mine in Hainan Province, southern China. Results indicated that concentrations of Pb, As, Cd, Hg, and CN in different soil depths and mine tailings were up to ten thousand mg/kg, and relatively higher content of As and Pb was detected in groundwater. The chemical forms of Cd, Pb, As, and Hg varied greatly in different soil depths; over 80% of Cd distributed in the water-soluble fraction, suggesting its higher mobility in soils, while approximately 60-90% of Pb, As, and Hg distributed in other chemical fractions, indicating relatively lower mobility in soils. The pollution indices also revealed the serious pollution and deterioration of site quality in this area. Human risk assessments also reflected a high non-carcinogenic/carcinogenic health risk in this area. The framework of integrated management strategies for private metal mines was proposed to mitigate PTEs pollution and reduce health risks.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Banhos , Cádmio , China , Cianetos/toxicidade , Monitoramento Ambiental/métodos , Ouro , Humanos , Chumbo , Metais Pesados/análise , Metais Pesados/toxicidade , Medição de Risco , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Água
6.
Sci Total Environ ; 743: 140755, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758841

RESUMO

Wide use of plastic greenhouses for vegetable production increases human exposure to phthalate (PAEs) through vegetable intake. However, little information is available about distribution of PAEs in air-soil-vegetable systems of plastic greenhouses and PAE estrogenic effects. This study was designed to investigate PAE distributions and corresponding health risk in plastic greenhouses in Guangzhou, a subtropical city in South China. PAEs were prevalent in plastic greenhouses, with sum concentrations of 16 PAE compounds (∑16PAEs) up to 5.76 mg/kg in soils, 5.27 mg/kg in vegetables and 4393 ng/m3 in air. Di (2-ethylhexyl) phthalate, di-isobutyl phthalate, and dibutyl phthalate were predominant compounds. Average concentrations and bioconcentration factor of ∑16PAEs and the predominant PAE compounds in vegetables of greenhouses were higher than those of open fields. Plastic greenhouses exhibited significantly higher air PAE levels than those of open fields due to higher indoor temperature, which enhanced PAE accumulation by vegetables. Both carcinogenic and non-carcinogenic risks of PAEs via dietary and non-dietary exposures for farmers decreased with an order of vegetable > air > soil. Consumption of vegetables from greenhouses resulted in significantly higher estrogenic effects compared to those from open field cultivation. This study emphasizes highly potential health risks of PAEs in air-soil-vegetable systems of plastic greenhouses.

7.
Sci Total Environ ; 707: 135609, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31771853

RESUMO

Phthalate acid esters (PAEs) are of serious concern as a human health risk due to their ubiquitous presence in indoor air. In the present study, fifteen PAEs in the indoor air samples from physical, chemical, and biological laboratories in Guangzhou, southern China were analysed using gas chromatography mass spectrometry. Extremely high levels of PAEs of up to 6.39 × 104 ng/m3 were detected in some laboratories. Diisobutyl phthalate (DiBP), di(methoxyethyl) phthalate (DMEP), and di-n-butyl phthalate (DBP) were the dominant PAEs with median levels of 0.48 × 103, 0.44 × 103, and 0.39 × 103 ng/m3, respectively, followed by di-(2-propylheptyl) phthalate (DPHP) and di(2-ethylhexyl) phthlate (DEHP) (median levels: 0.16 × 103 and 0.13 × 103 ng/m3, respectively). DMEP and DPHP were found for the first time in indoor air. Principal component analysis indicated that profiles of PAEs varied greatly among laboratory types, suggesting notable variations in sources. The results of independent samples t-tests showed that levels of PAEs were significantly influenced by various environmental conditions. Both the non-carcinogenic and carcinogenic health risks from human exposure to PAEs based on the daily exposure dose in laboratory air were acceptable. Further research should be conducted to investigate the long-term health effects of exposure to PAEs in laboratories.


Assuntos
Poluição do Ar em Ambientes Fechados , China , Dibutilftalato , Ésteres , Humanos , Ácidos Ftálicos
8.
Oncotarget ; 8(27): 44732-44748, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28512254

RESUMO

Chronic stress has been associated with the progression of cancer and antagonists for ß-adrenoceptors (ßAR) are regarded as therapeutic option. As they are also used to treat hemangiomas as well as retinopathy of prematurity, a role of endothelial ß2AR in angiogenesis can be envisioned. We therefore investigated the role of ß2AR-induced cAMP formation by analyzing the role of the cAMP effector molecules exchange factor directly activated by cAMP 1 (Epac1) and protein kinase A (PKA) in endothelial cells (EC). Epac1-deficient mice showed a reduced amount of pre-retinal neovascularizations in the model of oxygen-induced retinopathy, which is predominantly driven by vascular endothelial growth factor (VEGF). siRNA-mediated knockdown of Epac1 in human umbilical vein EC (HUVEC) decreased angiogenic sprouting by lowering the expression of the endothelial VEGF-receptor-2 (VEGFR-2). Conversely, Epac1 activation by ß2AR stimulation or the Epac-selective activator cAMP analog 8-p-CPT-2'-O-Me-cAMP (8-pCPT) increased VEGFR-2 levels and VEGF-dependent sprouting. Similar to Epac1 knockdown, depletion of the monomeric GTPase Rac1 decreased VEGFR-2 expression. As Epac1 stimulation induces Rac1 activation, Epac1 might regulate VEGFR-2 expression through Rac1. In addition, we found that PKA was also involved in the regulation of angiogenesis in EC since the adenylyl cyclase (AC) activator forskolin (Fsk), but not 8-pCPT, increased sprouting in Epac1-depleted HUVEC and this increase was sensitive to a selective synthetic peptide PKA inhibitor. In accordance, ß2AR- and AC-activation, but not Epac1 stimulation increased VEGF secretion in HUVEC.Our data indicate that high levels of catecholamines, which occur during chronic stress, prime the endothelium for angiogenesis through a ß2AR-mediated increase in endothelial VEGFR-2 expression and VEGF secretion.


Assuntos
Catecolaminas/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Receptores Adrenérgicos beta 2/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , AMP Cíclico , Fatores de Troca do Nucleotídeo Guanina/genética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Camundongos Knockout , Oxigênio/metabolismo , RNA Interferente Pequeno/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 35(8): 1852-61, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26088577

RESUMO

OBJECTIVE: Vascular smooth muscle cells (VSMC) proliferation is a hallmark of atherosclerosis and vascular restenosis. The intermediate conductance Ca(2+)-activated K(+) (SK4) channel is required for pathological VSMC proliferation. In T lymphocytes, nucleoside diphosphate kinase B (NDPKB) has been implicated in SK4 channel activation. We thus investigated the role of NDPKB in the regulation of SK4 currents (ISK4) in proliferating VSMC and neointima formation. APPROACH AND RESULTS: Function and expression of SK4 channels in VSMC from injured mouse carotid arteries were assessed by patch-clamping and real-time polymerase chain reaction. ISK4 was detectable in VSMC from injured but not from uninjured arteries correlating with the occurrence of the proliferative phenotype. Direct application of NDPKB to the membrane of inside-out patches increased ISK4, whereas NDPKB did not alter currents in VSMC obtained from injured vessels of SK4-deficient mice. The NDPKB-induced increase in ISK4 was prevented by protein histidine phosphatase 1, but not an inactive protein histidine phosphatase 1 mutant indicating that ISK4 is regulated via histidine phosphorylation in proliferating VSMC; moreover, genetic NDPKB ablation reduced ISK4 by 50% suggesting a constitutive activation of ISK4 in proliferating VSMC. In line, neointima formation after wire injury of the carotid artery was substantially reduced in mice deficient in SK4 channels or NDPKB. CONCLUSIONS: NDPKB to SK4 signaling is required for neointima formation. Constitutive activation of SK4 by NDPKB in proliferating VSMC suggests that targeting this interaction via, for example, activation of protein histidine phosphatase 1 may provide clinically meaningful effects in vasculoproliferative diseases such as atherosclerosis and post angioplasty restenosis.


Assuntos
Lesões das Artérias Carótidas/enzimologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Neointima , Animais , Artérias Carótidas/enzimologia , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/deficiência , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Potenciais da Membrana , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Nucleosídeo NM23 Difosfato Quinases/deficiência , Nucleosídeo NM23 Difosfato Quinases/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA