Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Anal Chem ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743814

RESUMO

Adenosine-to-inosine (A-to-I) editing and N6-methyladenosine (m6A) modifications are pivotal RNA modifications with widespread functional significance in physiological and pathological processes. Although significant effort has been dedicated to developing methodologies for identifying and quantifying these modifications, traditional approaches have often focused on each modification independently, neglecting the potential co-occurrence of A-to-I editing and m6A modifications at the same adenosine residues. This limitation has constrained our understanding of the intricate regulatory mechanisms governing RNA function and the interplay between different types of RNA modifications. To address this gap, we introduced an innovative technique called deamination-assisted reverse transcription stalling (DARTS), specifically designed for the simultaneous quantification of A-to-I editing and m6A at the same RNA sites. DARTS leverages the selective deamination activity of the engineered TadA-TadA8e protein, which converts adenosine residues to inosine, in combination with the unique property of Bst 2.0 DNA polymerase, which stalls when encountering inosine during reverse transcription. This approach enables the accurate quantification of A-to-I editing, m6A, and unmodified adenosine at identical RNA sites. The DARTS method is remarkable for its ability to directly quantify two distinct types of RNA modifications simultaneously, a capability that has remained largely unexplored in the field of RNA biology. By facilitating a comprehensive analysis of the co-occurrence and interaction between A-to-I editing and m6A modifications, DARTS opens new avenues for exploring the complex regulatory networks modulated by different RNA modifications.

2.
Neurobiol Stress ; 30: 100632, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38601361

RESUMO

The involvement of lipids in the mechanism of depression has triggered extensive discussions. Earlier studies have identified diminished levels of lysophosphatidic acid (LPA) and autotaxin (ATX) in individuals experiencing depression. However, the exact significance of this phenomenon in relation to depression remains inconclusive. This study seeks to explore the deeper implications of these observations. We assessed alterations in ATX and LPA in both the control group and the chronic unpredictable mild stress (CUMS) model group. Additionally, the impact of ATX adeno-associated virus (AAV-ATX) injection into the hippocampus was validated through behavioral tests in CUMS-exposed mice. Furthermore, we probed the effects of LPA on synapse-associated proteins both in HT22 cells and within the mouse hippocampus. The mechanisms underpinning the LPA-triggered shifts in protein expression were further scrutinized. Hippocampal tissues were augmented with ATX to assess its potential to alleviate depression-like behavior by modulating synaptic-related proteins. Our findings suggest that the decrement in ATX and LPA levels alters the expression of proteins associated with synaptic plasticity in vitro and in vivo, such as synapsin-I (SYN), synaptophysin (SYP), and brain-derived neurotrophic factor (BDNF). Moreover, we discerned a role for the ERK/CREB signaling pathway in mediating the effects of ATX and LPA. Importantly, strategic supplementation of ATX effectively mitigated depression-like behaviors. This study indicates that the ATX-LPA pathway may influence depression-like behaviors by modulating synaptic plasticity in the brains of CUMS-exposed mice. These insights augment our understanding of depression's potential pathogenic mechanism in the context of lipid metabolism and propose promising therapeutic strategies for ameliorating the disease.

3.
Pestic Biochem Physiol ; 201: 105849, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685233

RESUMO

Beta-cypermethrin (ß-CYP) consists of four chiral isomers, acting as an environmental estrogen and causing reproductive toxicity, neurotoxicity, and dysfunctions in multiple organ systems. This study investigated the toxic effects of ß-CYP, its isomers, metabolite 3-phenoxybenzoic acid (3-PBA), and 17ß-estradiol (E2) on HTR-8/SVneo cells. We focused on the toxic mechanisms of ß-CYP and its specific isomers. Our results showed that ß-CYP and its isomers inhibit HTR-8/SVneo cell proliferation similarly to E2, with 100 µM 1S-trans-αR displaying significant toxicity after 48 h. Notably, 1S-trans-αR, 1R-trans-αS, and ß-CYP were more potent in inducing apoptosis and cell cycle arrest than 1R-cis-αS and 1S-cis-αR at 48 h. AO/EB staining and flow cytometry indicated dose-dependent apoptosis in HTR-8/SVneo cells, particularly at 100 µM 1R-trans-αS. Scratch assays revealed that ß-CYP and its isomers variably reduced cell migration. Receptor inhibition assays demonstrated that post-ICI 182780 treatment, which inhibits estrogen receptor α (ERα) or estrogen receptor ß (ERß), ß-CYP, its isomers, and E2 reduced HTR-8/SVneo cell viability, whereas milrinone, a phosphodiesterase 3 A (PDE3A) inhibitor, increased viability. Molecular docking studies indicated a higher affinity of ß-CYP, its isomers, and E2 for PDE3A than for ERα or ERß. Consequently, ß-CYP, its isomers, and E2 consistently led to decreased cell viability. Transcriptomics and RT-qPCR analyses showed differential expression in treated cells: up-regulation of Il24 and Ptgs2, and down-regulation of Myo7a and Pdgfrb, suggesting the PI3K-AKT signaling pathway as a potential route for toxicity. This study aims to provide a comprehensive evaluation of the cytotoxicity of chiral pesticides and their mechanisms.


Assuntos
Apoptose , Piretrinas , Humanos , Piretrinas/toxicidade , Piretrinas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Simulação de Acoplamento Molecular , Estradiol/farmacologia , Proliferação de Células/efeitos dos fármacos , Inseticidas/toxicidade , Inseticidas/farmacologia , Inseticidas/química , Isomerismo , Movimento Celular/efeitos dos fármacos , Benzoatos/farmacologia , Benzoatos/química , Estereoisomerismo , Sobrevivência Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos
4.
CNS Neurosci Ther ; 30(3): e14661, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38439616

RESUMO

AIMS: To investigate the antidepressant role of oligodendrocyte-derived exosomes (ODEXs)-containing sirtuin 2 (SIRT2) and the underlying mechanism both in vivo and in vitro. METHODS: Oligodendrocyte-derived exosomes isolated from mouse serum were administered to mice with chronic unpredictable mild stress (CUMS)-induced depression via the tail vein. The antidepressant effects of ODEXs were assessed through behavioral tests and quantification of alterations in hippocampal neuroplasticity. The role of SIRT2 was confirmed using the selective inhibitor AK-7. Neural stem/progenitor cells (NSPCs) were used to further validate the impact of overexpressed SIRT2 and ODEXs on neurogenesis and synapse formation in vitro. RESULTS: Oligodendrocyte-derived exosome treatment alleviated depressive-like behaviors and restored neurogenesis and synaptic plasticity in CUMS mice. SIRT2 was enriched in ODEXs, and blocking SIRT2 with AK-7 reversed the antidepressant effects of ODEXs. SIRT2 overexpression was sufficient to enhance neurogenesis and synaptic protein expression. Mechanistically, ODEXs mediated transcellular delivery of SIRT2, targeting AKT deacetylation and AKT/GSK-3ß signaling to regulate neuroplasticity. CONCLUSION: This study establishes how ODEXs improve depressive-like behaviors and hippocampal neuroplasticity and might provide a promising therapeutic approach for depression.


Assuntos
Exossomos , Animais , Camundongos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Hipocampo , Neurogênese , Plasticidade Neuronal , Oligodendroglia , Proteínas Proto-Oncogênicas c-akt , Sirtuína 2
5.
Anal Chem ; 96(11): 4726-4735, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38450632

RESUMO

DNA cytosine methylation (5-methylcytosine, 5mC) is a predominant epigenetic modification that plays a critical role in a variety of biological and pathological processes in mammals. In active DNA demethylation, the 10-11 translocation (TET) dioxygenases can sequentially oxidize 5mC to generate three modified forms of cytosine, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Beyond being a demethylation intermediate, recent studies have shown that 5fC has regulatory functions in gene expression and chromatin organization. While some methods have been developed to detect 5fC, genome-wide mapping of 5fC at base resolution is still highly desirable. Herein, we propose a chemical labeling enrichment and deamination sequencing (CLED-seq) method for detecting 5fC in genomic DNA at single-base resolution. The CLED-seq method utilizes selective labeling and enrichment of 5fC-containing DNA fragments, followed by deamination mediated by apolipoprotein B mRNA-editing catalytic polypeptide-like 3A (APOBEC3A or A3A) and sequencing. In the CLED-seq process, while all C, 5mC, and 5hmC are interpreted as T during sequencing, 5fC is still read as C, enabling the precise detection of 5fC in DNA. Using the proposed CLED-seq method, we accomplished genome-wide mapping of 5fC in mouse embryonic stem cells. The mapping study revealed that promoter regions enriched with 5fC overlapped with H3K4me1, H3K4me3, and H3K27ac marks. These findings suggest a correlation between 5fC marks and active gene expression in mESCs. In conclusion, CLED-seq is a straightforward, bisulfite-free method that offers a valuable tool for detecting 5fC in genomes at a single-base resolution.


Assuntos
Citidina Desaminase , Citosina , Citosina/análogos & derivados , Epigênese Genética , Proteínas , Animais , Camundongos , Desaminação , Citosina/metabolismo , 5-Metilcitosina/metabolismo , Mapeamento Cromossômico , DNA/genética , DNA/metabolismo , Metilação de DNA , Mamíferos/metabolismo
6.
Food Chem ; 444: 138669, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38341915

RESUMO

Improving the emulsion-stabilizing effect of protein by chemical or physical modification has been paid much attention recently. Here, sodium caseinate (CS) was treated by high-pressure-microfluidization (HPM) under 0-100 MPa, and was further complexed with (-)-epigallocatechin-3-gallate (EGCG) to form an excellent emulsifier that stabilized fish oil emulsions. Results showed that HPM treatment (especially 80 MPa) significantly changed the secondary structure of CS, and 80 MPa-PCS-EGCG had the best emulsifying and antioxidant activities. In addition, after HPM treatment and EGCG bonding, CS formed a thicker interface layer on the surface of oil droplets, which could better protect the fish oil from the influence by oxygen, temperature and ion concentration. Moreover, the fish oil emulsion stabilized by PCS-EGCG complex significantly delayed the release of free fatty acids subjected to in vitro digestion. Conclusively, HPM-treated CS-EGCG complex could be a potential emulsifier to improve the stability of fish oil emulsions.


Assuntos
Caseínas , Catequina/análogos & derivados , Óleos de Peixe , Emulsões/química , Óleos de Peixe/química , Caseínas/química , Emulsificantes/química
7.
Biomater Sci ; 12(9): 2282-2291, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38415775

RESUMO

Bio-adhesives used clinically, commonly have the ability to fill surgical voids and support wound healing, but which are devoid of antibacterial activity, and thus, could not meet the particular needs of the infected wound site. Herein, a series of natural polyphenolic antibacterial bio-adhesives were prepared via simple mixing and heating of polyphenols and acid anhydrides without any solvent or catalyst. Upon the acid anhydride ring opening and acylation reactions, various natural polyphenolic bio-adhesives could adhere to various substrates (i.e., tissue, wood, glass, rubber, paper, plastic, and metal) based on multi-interactions. Moreover, these bio-adhesives showed excellent antibacterial and anti-infection activity, rapid hemostatic performance and appropriate biodegradability, which could be widely used in promoting bacterial infection wound healing and hot burn infection wound repair. This work could provide a new strategy for strong adhesives using naturally occurring molecules, and provide a method for the preparation of novel multifunctional wound dressings for infected wound healing.


Assuntos
Antibacterianos , Polifenóis , Cicatrização , Cicatrização/efeitos dos fármacos , Polifenóis/farmacologia , Polifenóis/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Animais , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Humanos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana
8.
Anal Chem ; 96(2): 847-855, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38159051

RESUMO

RNA molecules undergo various chemical modifications that play critical roles in a wide range of biological processes. N6,N6-Dimethyladenosine (m6,6A) is a conserved RNA modification and is essential for the processing of rRNA. To gain a deeper understanding of the functions of m6,6A, site-specific and accurate quantification of this modification in RNA is indispensable. In this study, we developed an AlkB-facilitated demethylation (AD-m6,6A) method for the site-specific detection and quantification of m6,6A in RNA. The N6,N6-dimethyl groups in m6,6A can cause reverse transcription to stall at the m6,6A site, resulting in truncated cDNA. However, we found that Escherichia coli AlkB demethylase can effectively demethylate m6,6A in RNA, generating full-length cDNA from AlkB-treated RNA. By quantifying the amount of full-length cDNA produced using quantitative real-time PCR, we were able to achieve site-specific detection and quantification of m6,6A in RNA. Using the AD-m6,6A method, we successfully detected and quantified m6,6A at position 1851 of 18S rRNA and position 937 of mitochondrial 12S rRNA in human cells. Additionally, we found that the level of m6,6A at position 1007 of mitochondrial 12S rRNA was significantly reduced in lung tissues from sleep-deprived mice compared with control mice. Overall, the AD-m6,6A method provides a valuable tool for easy, accurate, quantitative, and site-specific detection of m6,6A in RNA, which can aid in uncovering the functions of m6,6A in human diseases.


Assuntos
Proteínas de Escherichia coli , RNA , Humanos , Animais , Camundongos , RNA/química , Adenosina/química , DNA Complementar , Metilação , Escherichia coli/genética , Escherichia coli/metabolismo , Desmetilação , Oxigenases de Função Mista
9.
Sci Data ; 10(1): 790, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949921

RESUMO

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are a class of bioactive lipids that show therapeutic potential for diabetes, anti-cancer and inflammation. These FAHFAs can be obtained through dietary intake, potentially improving human health. However, there is currently inadequate knowledge regarding the presence and variety of FAHFAs in different foods. Herein, we profile FAHFAs from 12 typical food samples and 4 medicinal food samples with the aid of our previous established chemical isotope labeling-assisted liquid chromatography-mass spectrometry method and build a comprehensive dataset of FAHFA diversity. The dataset comprised a total of 1207 regioisomers belonging to 298 different families, with over 100 families being newly discovered for the first time. Therefore, our findings contribute valuable insights into the molecular diversity and presence of FAHFA in a range of foods. This dataset serves as a foundation for further exploration of the nutritional and medicinal functions of FAHFAs.


Assuntos
Ésteres , Ácidos Graxos , Humanos , Cromatografia Líquida/métodos , Ésteres/análise , Ésteres/química , Alimentos , Espectrometria de Massas
10.
Metabolites ; 13(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999204

RESUMO

Lipid reprogramming metabolism is crucial for supporting tumor growth in breast cancer and investigating potential tumor biomarkers. Fatty acid esters of hydroxy fatty acids (FAHFAs) are a class of endogenous lipid metabolites with anti-diabetic and anti-inflammatory properties that have been discovered in recent years. Our previous targeted analysis of sera from breast cancer patients revealed a significant down-regulation of several FAHFAs. In this study, we aimed to further explore the relationship between FAHFAs and breast cancer by employing chemical isotope labeling combined with liquid chromatography-mass spectrometry (CIL-LC-MS) for profiling of FAHFAs in tumors and adjacent normal tissues from breast cancer patients. Statistical analysis identified 13 altered isomers in breast cancer. These isomers showed the potential to distinguish breast cancer tissues with an area under the curve (AUC) value above 0.9 in a multivariate receiver operating curve model. Furthermore, the observation of up-regulated 9-oleic acid ester of hydroxy stearic acid (9-OAHSA) and down-regulated 9-hydroxystearic acid (9-HSA) in tumors suggests that breast cancer shares similarities with colorectal cancer, and their potential mechanism is to attenuate the effects of pro-apoptotic 9-HSA by enhancing the synthesis of FAHFAs, thereby promoting tumor survival and progression through this buffering system.

11.
Anal Chem ; 95(28): 10588-10594, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37402148

RESUMO

N6-Methyladenosine (m6A) is one of the most abundant and prevalent natural modifications occurring in diverse RNA species. m6A plays a wide range of roles in physiological and pathological processes. Revealing the functions of m6A relies on the faithful detection of individual m6A sites in RNA. However, developing a simple method for the single-base resolution detection of m6A is still a challenging task. Herein, we report an adenosine deamination sequencing (AD-seq) technique for the facile detection of m6A in RNA at single-base resolution. The AD-seq approach capitalizes on the selective deamination of adenosine, but not m6A, by the evolved tRNA adenosine deaminase (TadA) variant of TadA8e or the dimer protein of TadA-TadA8e. In AD-seq, adenosine is deaminated by TadA8e or TadA-TadA8e to form inosine, which pairs with cytidine and is read as guanosine in sequencing. m6A resists deamination due to the interference of the methyl group at the N6 position of adenosine. Thus, the m6A base pairs with thymine and is still read as adenosine in sequencing. The differential readouts from A and m6A in sequencing can achieve the single-base resolution detection of m6A in RNA. Application of the proposed AD-seq successfully identified individual m6A sites in Escherichia coli 23S rRNA. Taken together, the proposed AD-seq allows simple and cost-effective detection of m6A at single-base resolution in RNA, which provides a valuable tool to decipher the functions of m6A in RNA.


Assuntos
RNA de Transferência , RNA , RNA/metabolismo , Desaminação , RNA de Transferência/metabolismo , Adenosina/metabolismo , Adenosina Desaminase/metabolismo
12.
Anal Chem ; 95(21): 8384-8392, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37192336

RESUMO

Chemical modifications in DNA have profound influences on the structures and functions of DNA. Uracil, a naturally occurring DNA modification, can originate from the deamination of cytosine or arise from misincorporation of dUTP into DNA during DNA replication. Uracil in DNA will imperil genomic stability due to their potential in producing detrimental mutations. An in-depth understanding of the functions of uracil modification requires the accurate determination of its site as well as content in genomes. Herein, we characterized that a new member of the uracil-DNA glycosylase (UDG) family enzyme (UdgX-H109S) could selectively cleave both uracil-containing single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). Based on this unique property of UdgX-H109S, we developed an enzymatic cleavage-mediated extension stalling (ECES) method for the locus-specific detection and quantification of uracil in genomic DNA. In the ECES method, UdgX-H109S specifically recognizes and cleaves the N-glycosidic bond of uracil from dsDNA and generates an apurinic/apyrimidinic (AP) site, which could be broken by APE1 to form a one-nucleotide gap. The specific cleavage by UdgX-H109S is then evaluated and quantified by qPCR. With the developed ECES approach, we demonstrated that the level of uracil at position Chr4:50566961 in genomic DNA of breast cancer tissues was significantly decreased. Collectively, the ECES method has been proved to be accurate and reproducible in the locus-specific quantification of uracil in genomic DNA from biological and clinical samples.


Assuntos
DNA , Uracila , Uracila/química , DNA/genética , DNA/química , Uracila-DNA Glicosidase/metabolismo , Nucleotídeos , DNA de Cadeia Simples
13.
Nutrients ; 15(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36771206

RESUMO

BACKGROUND: Luteolin is widely distributed among a number of vegetal species worldwide. The pharmacological effects of luteolin are diverse and amongst antioxidant, free radical scavenging, and anti-inflammatory activities. Preliminary study showed that luteolin can ameliorate hypertension. However, the precise mechanism needs further investigation. There is no evidence that luteolin affects the paraventricular nucleus of the hypothalamus (PVN), a brain nucleus associated with a critical neural regulator of blood pressure. Our main aim was to explore the effect of luteolin on the PI3K/Akt/NF-κB signaling pathway within the PVN of hypertensive rats. METHODS: spontaneously hypertensive rats (SHRs) and corresponding normotensive control rats, the Wistar Kyoto (WKY) rats were divided into four groups and subsequently treated for 4 weeks with bilateral PVN injections of either luteolin (20 µg/0.11 µL, volume: 0.11 µL/h) or vehicle (artificial cerebrospinal fluid). RESULTS: luteolin infusion to the PVN significantly decreased some hemodynamic parameters including the mean arterial pressure (MAP), heart rate (HR), circulating plasma norepinephrine (NE) and epinephrine (EPI). Additionally, there was a decrease in the expressions of the phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT), levels of reactive oxygen species (ROS), NAD(P)H oxidase subunit (NOX2, NOX4) in the PVN of SHRs. Meanwhile, the expression of inflammatory cytokines and the activity of nuclear factor κB (NF-κB) p65 in the PVN of SHRs were lowered. Furthermore, immunofluorescence results showed that injection of luteolin in the PVN reduced the expression of tyrosine hydroxylase (TH), and increased that of superoxide dismutase (SOD1) and the 67-kDa isoform of glutamate decarboxylase (GAD67) in the PVN of SHRs. CONCLUSION: Our novel findings revealed that luteolin lowered hypertension via inhibiting NF-κB-mediated inflammation and PI3K/Akt signaling pathway in the PVN.


Assuntos
Hipertensão , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Luteolina/farmacologia , Luteolina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Endogâmicos WKY , Transdução de Sinais , Ratos Endogâmicos SHR , Inflamação/metabolismo , Sistema Nervoso Simpático
14.
Biosens Bioelectron ; 219: 114821, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279821

RESUMO

RNA molecules contain diverse modifications that play crucial roles in a wide variety of biological processes. Inosine is one of the most prevalent modifications in RNA and dysregulation of inosine is correlated with many human diseases. Herein, we established an acrylonitrile labeling-mediated elongation stalling (ALES) method for quantitative and site-specific detection of inosine in RNA from biological samples. In ALES method, inosine is selectively cyanoethylated with acrylonitrile to form N1-cyanoethylinosine (ce1I) through a Michael addition reaction. The N1-cyanoethyl group of ce1I compromises the hydrogen bond between ce1I and other nucleobases, leading to the stalling of reverse transcription at original inosine site. This specific property of stalling at inosine site could be evaluated by subsequent real-time quantitative PCR (qPCR). With the proposed ALES method, we found the significantly increased level of inosine at position Chr1:63117284 of Ino80dos RNA of multiple tissues from sleep-deprived mice compared to the control mice. This is the first report on the investigation of inosine modification in sleep-deprived mice, which may open up new direction for deciphering insomnia from RNA modifications. In addition, we found the decreased level of inosine at GluA2 Q/R site (Chr4:157336723) in glioma tissues, indicating the decreased level of inosine at GluA2 Q/R site may serve as potential indicator for the diagnosis of glioma. Taken together, the proposed ALES method is capable of quantitative and site-specific detection of inosine in RNA, which provides a valuable tool to uncover the functions of inosine in human diseases.

15.
Anal Chem ; 95(2): 1556-1565, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36563112

RESUMO

DNA methylation (5-methylcytosine, 5mC) is the most important epigenetic modification in mammals. Deciphering the roles of 5mC relies on the quantitative detection of 5mC at the single-base resolution. Bisulfite sequencing (BS-seq) is the most often employed technique for mapping 5mC in DNA. However, bisulfite treatment may cause serious degradation of input DNA due to the harsh reaction conditions. Here, we engineered the human apolipoprotein B mRNA-editing catalytic polypeptide-like 3C (A3C) protein to endow the engineered A3C (eA3C) protein with differential deamination activity toward cytosine and 5mC. By the virtue of the unique property of eA3C, we proposed an engineered A3C sequencing (EAC-seq) method for the bisulfite-free and quantitative mapping of 5mC in DNA at the single-base resolution. In EAC-seq, the eA3C protein can deaminate C but not 5mC, which is employed to differentiate C and 5mC in sequencing. Using the EAC-seq method, we quantitatively detected 5mC in genomic DNA of lung cancer tissue. In contrast to the harsh reaction conditions of BS-seq, which could lead to significant degradation of DNA, the whole procedure of EAC-seq is carried out under mild conditions, thereby preventing DNA damage. Taken together, the EAC-seq approach is bisulfite-free and straightforward, making it an invaluable tool for the quantitative detection of 5mC in limited DNA at the single-base resolution.


Assuntos
5-Metilcitosina , Citidina Desaminase , Metilação de DNA , Humanos , 5-Metilcitosina/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Citosina , DNA/genética , DNA/metabolismo , Epigênese Genética , Análise de Sequência de DNA/métodos , Sulfitos/metabolismo
16.
ACS Cent Sci ; 9(12): 2315-2325, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38161361

RESUMO

The epigenetic modification 5-hydroxymethylcytosine (5hmC) plays a crucial role in the regulation of gene expression. Although some methods have been developed to detect 5hmC, direct genome-wide mapping of 5hmC at base resolution is still highly desirable. Herein, we proposed a single-step deamination sequencing (SSD-seq) method, designed to precisely map 5hmC across the genome at single-base resolution. SSD-seq takes advantage of a screened engineered human apolipoprotein B mRNA-editing catalytic polypeptide-like 3A (A3A) protein, known as eA3A-v10, to selectively deaminate cytosine (C) and 5-methylcytosine (5mC) but not 5hmC. During sequencing, the deaminated C and 5mC are converted to uracil (U) and thymine (T), read as T in the sequencing data. However, 5hmC remains unaffected by eA3A-v10 and is read as C during sequencing. Consequently, the presence of C in the sequence reads indicates the original 5hmC. We applied SSD-seq to generate a base-resolution map of 5hmC in human lung tissue. Our findings revealed that 5hmC was predominantly localized to CpG dinucleotides. Furthermore, the base-resolution map of 5hmC generated by SSD-seq demonstrated a strong correlation with prior ACE-seq results. The advantages of SSD-seq are its single-step process, absence of bisulfite treatment or DNA glycosylation, cost effectiveness, and ability to detect and quantify 5hmC directly at single-base resolution.

17.
Anal Chem ; 94(44): 15489-15498, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36280344

RESUMO

DNA methylation (5-methylcytosine, 5mC) is the most prevalent epigenetic modification that is predominantly found in CG dinucleotides in mammalian genomes. In-depth investigation of the functions of 5mC heavily relies on the quantitative measurement of 5mC at single-base resolution in genomes. Here, we proposed a methyltransferase-directed labeling with APOBEC3A (A3A) deamination sequencing (MLAD-seq) method for the single-base resolution and quantitative detection of 5mC in DNA. In MLAD-seq, a mutant of DNA methyltransferase, M.MpeI-N374K, is utilized to selectively transfer a carboxymethyl group to the 5 position of cytosine in the CG dinucleotide to form 5-carboxymethylcytosine (5camC) using carboxy-S-adenosyl-l-methionine (caSAM) as the cofactor. After A3A treatment, 5camC is resistant to the deamination and base pairs with guanine. Thus, the cytosines in CG sites are read as C in sequencing. On the contrary, the methyl group in 5mC inhibits its carboxymethylcytosine by M.MpeI-N374K and therefore is readily deaminated by A3A to produce thymine that pairs with adenine and is read as T in sequencing. The differential readouts from C and 5mC in the MLAD-seq enable the single-base resolution mapping of 5mC in CG sites in DNA. With the developed MLAD-seq method, we observed the hypermethylation in the promoter region of retinoic acid receptor ß (RARB) gene from human nonsmall cell lung tumor tissue. Compared to harsh reaction conditions in bisulfite sequencing that could lead to significant degradation of DNA, the whole procedure of MLAD-seq is carried out under mild conditions, which will avoid DNA damage. Thus, MLAD-seq is more suitable in the scenario where only limited input DNA is available. Taken together, the MLAD-seq offers a valuable tool for bisulfite-free, single-base resolution and quantitative detection of 5mC in limited DNA.


Assuntos
5-Metilcitosina , Metiltransferases , Animais , Humanos , Desaminação , Análise de Sequência de DNA/métodos , Sulfitos , Epigênese Genética , DNA/genética , Citosina , Metilação de DNA , Mamíferos
18.
Molecules ; 27(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144530

RESUMO

Solid-phase analytical derivatization (SPAD) is a promising hybrid sample preparation technique combining the clean-up and preconcentration of the sample in a single step. In this work, a novel SPAD method based on the preparation of trimethylsilyl (TMS) derivatives of steroid hormones (testosterone, estrone, DHT, estriol, estradiol, and progesterone) in Phenomenex Strata C18-E (100 mg, 1 mL) cartridges has been developed and applied for their GC-MS/MS determination in human urine samples. The proposed procedure allows the detection and quantification of steroids with limits of 1.0-2.5 and 2.5-5 ng/mL, respectively. These characteristics are comparable with those obtained with a conventional liquid-liquid extraction, while the recovery of analytes in the proposed SPAD procedure is higher. The major advantages of SPAD are a short derivatization time, high efficiency, and the possibility to automatize the procedure. However, its cost-effectiveness in routine practice is still questionable.


Assuntos
Estrona , Espectrometria de Massas em Tandem , Estradiol , Estriol , Estrogênios/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Progesterona , Extração em Fase Sólida , Espectrometria de Massas em Tandem/métodos , Testosterona
19.
Nucleic Acids Res ; 50(17): 9858-9872, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36095124

RESUMO

RNA molecules harbor diverse modifications that play important regulatory roles in a variety of biological processes. Over 150 modifications have been identified in RNA molecules. N6-methyladenosine (m6A) and 1-methyladenosine (m1A) are prevalent modifications occurring in various RNA species of mammals. Apart from the single methylation of adenosine (m6A and m1A), dual methylation modification occurring in the nucleobase of adenosine, such as N6,N6-dimethyladenosine (m6,6A), also has been reported to be present in RNA of mammals. Whether there are other forms of dual methylation modification occurring in the nucleobase of adenosine other than m6,6A remains elusive. Here, we reported the existence of a novel adenosine dual methylation modification, i.e. 1,N6-dimethyladenosine (m1,6A), in tRNAs of living organisms. We confirmed that m1,6A is located at position 58 of tRNAs and is prevalent in mammalian cells and tissues. The measured level of m1,6A ranged from 0.0049% to 0.047% in tRNAs. Furthermore, we demonstrated that TRMT6/61A could catalyze the formation of m1,6A in tRNAs and m1,6A could be demethylated by ALKBH3. Collectively, the discovery of m1,6A expands the diversity of RNA modifications and may elicit a new tRNA modification-mediated gene regulation pathway.


Assuntos
Adenosina , RNA de Transferência , Adenosina/genética , Adenosina/metabolismo , Animais , Mamíferos/genética , Mamíferos/metabolismo , Metilação , RNA/genética , RNA/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
20.
Chem Sci ; 13(23): 7046-7056, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35774177

RESUMO

The discovery of 5-hydroxymethylcytosine (5hmC) in mammalian genomes is a landmark in epigenomics study. Similar to 5-methylcytosine (5mC), 5hmC is viewed as a critical epigenetic modification. Deciphering the functions of 5hmC necessitates the location analysis of 5hmC in genomes. Here, we proposed an engineered deaminase-mediated sequencing (EDM-seq) method for the quantitative detection of 5hmC in DNA at single-nucleotide resolution. This method capitalizes on the engineered human apolipoprotein B mRNA-editing catalytic polypeptide-like 3A (A3A) protein to produce differential deamination activity toward cytosine, 5mC, and 5hmC. In EDM-seq, the engineered A3A (eA3A) protein can deaminate C and 5mC but not 5hmC. The original C and 5mC in DNA are deaminated by eA3A to form U and T, both of which are read as T during sequencing, while 5hmC is resistant to deamination by eA3A and is still read as C during sequencing. Therefore, the remaining C in the sequence manifests the original 5hmC. By EDM-seq, we achieved the quantitative detection of 5hmC in genomic DNA of lung cancer tissue. The EDM-seq method is bisulfite-free and does not require DNA glycosylation or chemical treatment, which offers a valuable tool for the straightforward and quantitative detection of 5hmC in DNA at single-nucleotide resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA