Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(25): 32078-32086, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38865735

RESUMO

The traditional recognition of extracellular matrix (ECM) at tissue sections relies on the time-consuming immunofluorescence that could not meet the demand of rapid diagnosis. Herein, we introduce a thickness-resolved electrochemiluminescence (ECL) microscopy to image thin-layer ECM at tissue sections for fast histopathological analysis. The unique surface-confined ECL mechanism enables to unveil the diversity and complexity of multiple tissue structures with varying thicknesses. Notably, the short lifetimes and the limited diffusion of electrogenerated coreactant radicals combined with their chemical reactivity result in a 2-fold increase in ECL intensity on ECM structures compared to the remaining tissue, enabling ECM visualization without specific labeling. The further quantitation of the ECM localization within tissue sections furnishes crucial insights into tumor progression and, more importantly, differentiates carcinoma and paracancerous tissues from patients in less than 30 min. Moreover, the reported electrochemistry-based microscopy is a dynamic approach allowing to investigate the transport, tortuosity, and trafficking properties through the tissues. This thickness-resolved recognition strategy not only opens new avenues for imaging complex samples but also holds promise for expediting tissue pathologic diagnosis, offering a more automated protocol with enhanced quantitative data compared to current intraoperative pathology methods.


Assuntos
Técnicas Eletroquímicas , Matriz Extracelular , Neoplasias , Humanos , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Técnicas Eletroquímicas/métodos , Neoplasias/diagnóstico , Neoplasias/patologia , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Medições Luminescentes/métodos , Microscopia/métodos
3.
Analyst ; 148(11): 2511-2517, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37191134

RESUMO

Histopathological molecular testing of tissue sections is an essential step in tumor diagnosis; however, the commonly used immunohistochemical methods have problems such as low specificity and the subjective bias of the observer. Here, we report an electrochemiluminescence (ECL) imaging method to detect a membrane carcinoembryonic antigen (CEA) at the single tissue sections of cancer patients. By permeabilizing the tissue attached to a glassy carbon electrode, Ru(bpy)32+ tagged at the membrane CEA of the tissue could electrochemically react with TPrA in solution to emit ECL that has near-zero background and an extremely high signal-to-background ratio. Using the established ECL method, the expression differences and distribution characteristics of the CEA protein in the carcinoma and paracancerous tissues of pancreatic ductal carcinoma (PDAC) and lung adenocarcinoma (LUAD) patients are investigated. The images reveal that CEA proteins are mostly distributed in the acini and surrounding areas both in PDAC and LUAD tissues. Therefore, the presented approach could be able to provide a new molecular recognition method for the diagnosis of adenocarcinoma and other tumors.


Assuntos
Técnicas Eletroquímicas , Medições Luminescentes , Humanos , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Antígeno Carcinoembrionário/análise , Antígeno Carcinoembrionário/metabolismo , Adenocarcinoma/química , Adenocarcinoma/metabolismo , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo
4.
J Hematol Oncol ; 15(1): 112, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978332

RESUMO

BACKGROUND: Although a substantial increase in the survival of patients with other cancers has been observed in recent decades, pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest diseases. No effective screening approach exists. METHODS: Differential exosomal long noncoding RNAs (lncRNAs) isolated from the serum of patients with PDAC and healthy individuals were profiled to screen for potential markers in liquid biopsies. The functions of LINC00623 in PDAC cell proliferation, migration and invasion were confirmed through in vivo and in vitro assays. RNA pulldown, RNA immunoprecipitation (RIP) and coimmunoprecipitation (Co-IP) assays and rescue experiments were performed to explore the molecular mechanisms of the LINC00623/NAT10 signaling axis in PDAC progression. RESULTS: A novel lncRNA, LINC00623, was identified, and its diagnostic value was confirmed, as it could discriminate patients with PDAC from patients with benign pancreatic neoplasms and healthy individuals. Moreover, LINC00623 was shown to promote the tumorigenicity and migratory capacity of PDAC cells in vitro and in vivo. Mechanistically, LINC00623 bound to N-acetyltransferase 10 (NAT10) and blocked its ubiquitination-dependent degradation by recruiting the deubiquitinase USP39. As a key regulator of N4-acetylcytidine (ac4C) modification of mRNA, NAT10 was demonstrated to maintain the stability of oncogenic mRNAs and promote their translation efficiency through ac4C modification. CONCLUSIONS: Our data revealed the role of LINC00623/NAT10 signaling axis in PDAC progression, showing that it is a potential biomarker and therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , RNA Longo não Codificante , Acetiltransferases/genética , Acetiltransferases/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Citidina/análogos & derivados , Regulação Neoplásica da Expressão Gênica , Humanos , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo , Invasividade Neoplásica/patologia , Neoplasias Pancreáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro , Proteases Específicas de Ubiquitina , Neoplasias Pancreáticas
5.
Front Mol Biosci ; 8: 650264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631790

RESUMO

Background: Recurrence after surgery is largely responsible for the extremely poor outcomes for patients with pancreatic ductal adenocarcinoma (PDAC). Ferroptosis is implicated in chemotherapy sensitivity and tumor recurrence, we aimed to find out survival-associated ferroptosis-related genes and use them to build a practical risk model with the purpose to predict PDAC recurrence. Methods: Univariate Cox regression analysis was conducted to obtain prognostic ferroptosis-related genes in The Cancer Genome Atlas (TCGA, N = 140) cohort. Multivariate Cox regression analysis was employed to construct a reliable and credible gene signature. The prognostic performance was verified in a MTAB-6134 (N = 286) validation cohort and a PACA-CA (N = 181) validation cohort. The stability of the signature was tested in TCGA and MTAB-6134 cohorts by ROC analyses. Pathway enrichment analysis was adopted to preliminary illuminate the biological relevance of the gene signature. Results: Univariate and multivariate Cox regression analyses identified a 5-gene signature that contained CAV1, DDIT4, SLC40A1, SRXN1 and TFAP2C. The signature could efficaciously stratify PDAC patients with different recurrence-free survival (RFS), both in the training and validation cohorts. Results of subgroup receiver operating characteristic curve (ROC) analyses confirmed the stability and the independence of this signature. Our signature outperformed clinical indicators and previous reported models in predicting RFS. Moreover, the signature was found to be closely associated with several cancer-related and drug response pathways. Conclusion: This study developed a precise and concise prognostic model with the clinical implication in predicting PDAC recurrence. These findings may facilitate individual management of postoperative recurrence in patients with PDAC.

6.
Front Mol Biosci ; 8: 676291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095229

RESUMO

Background: Previous prognostic signatures of pancreatic ductal adenocarcinoma (PDAC) are mainly constructed to predict the overall survival (OS), and their predictive accuracy needs to be improved. Gene signatures that efficaciously predict both OS and disease-free survival (DFS) are of great clinical significance but are rarely reported. Methods: Univariate Cox regression analysis was adopted to screen common genes that were significantly associated with both OS and DFS in three independent cohorts. Multivariate Cox regression analysis was subsequently performed on the identified genes to determine an optimal gene signature in the MTAB-6134 training cohort. The Kaplan-Meier (K-M), calibration, and receiver operating characteristic (ROC) curves were employed to assess the predictive accuracy. Biological process and pathway enrichment analyses were conducted to elucidate the biological role of this signature. Results: Multivariate Cox regression analysis determined a 7-gene signature that contained ASPH, DDX10, NR0B2, BLOC1S3, FAM83A, SLAMF6, and PPM1H. The signature had the ability to stratify PDAC patients with different OS and DFS, both in the training and validation cohorts. ROC curves confirmed the moderate predictive accuracy of this signature. Mechanically, the signature was related to multiple cancer-related pathways. Conclusion: A novel OS and DFS prediction model was constructed in PDAC with multi-cohort and cross-platform compatibility. This signature might foster individualized therapy and appropriate management of PDAC patients.

7.
Front Cell Dev Biol ; 9: 665161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996821

RESUMO

BACKGROUND: For pancreatic ductal adenocarcinoma (PDAC) patients, chemotherapy failure is the major reason for postoperative recurrence and poor outcomes. Establishment of novel biomarkers and models for predicting chemotherapeutic efficacy may provide survival benefits by tailoring treatments. METHODS: Univariate cox regression analysis was employed to identify EMT-related genes with prognostic potential for DFS. These genes were subsequently submitted to LASSO regression analysis and multivariate cox regression analysis to identify an optimal gene signature in TCGA training cohort. The predictive accuracy was assessed by Kaplan-Meier (K-M), receiver operating characteristic (ROC) and calibration curves and was validated in PACA-CA cohort and our local cohort. Pathway enrichment and function annotation analyses were conducted to illuminate the biological implication of this risk signature. RESULTS: LASSO and multivariate Cox regression analyses selected an 8-gene signature comprised DLX2, FGF9, IL6R, ITGB6, MYC, LGR5, S100A2, and TNFSF12. The signature had the capability to classify PDAC patients with different DFS, both in the training and validation cohorts. It provided improved DFS prediction compared with clinical indicators. This signature was associated with several cancer-related pathways. In addition, the signature could also predict the response to immune-checkpoint inhibitors (ICIs)-based immunotherapy. CONCLUSION: We established a novel EMT-related gene signature that was capable of predicting therapeutic response to adjuvant chemotherapy and immunotherapy. This signature might facilitate individualized treatment and appropriate management of PDAC patients.

8.
Front Mol Biosci ; 8: 659168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33834039

RESUMO

BACKGROUND: Accumulating evidence shows that the elevated expression of DCBLD2 (discoidin, CUB and LCCL domain-containing protein 2) is associated with unfavorable prognosis of various cancers. However, the correlation of DCBLD2 expression value with the diagnosis and prognosis of pancreatic ductal adenocarcinoma (PDAC) has not yet been elucidated. METHODS: Univariate Cox regression analysis was used to screen robust survival-related genes. Expression pattern of selected genes was investigated in PDAC tissues and normal tissues from multiple cohorts. Kaplan-Meier (K-M) survival curves, ROC curves and calibration curves were employed to assess prognostic performance. The relationship between DCBLD2 expression and immune cell infiltrates was conducted by CIBERSORT software. Biological processes and KEGG pathway enrichment analyses were adopted to clarify the potential function of DCBLD2 in PDAC. RESULTS: Univariate analysis, K-M survival curves and calibration curves indicated that DCBLD2 was a robust prognostic factor for PDAC with cross-cohort compatibility. Upregulation of DCBLD2 was observed in dissected PDAC tissues as well as extracellular vesicles from both plasma and serum samples of PDAC patients. Both DCBLD2 expression in tissue and extracellular vesicles had significant diagnostic value. Besides, DCBLD2 expression was correlated with infiltrating level of CD8+ T cells and macrophage M2 cells. Functional enrichment revealed that DCBLD2 might be involved in cell motility, angiogenesis, and cancer-associated pathways. CONCLUSION: Our study systematically analyzed the potential diagnostic, prognostic and therapeutic value of DCBLD2 in PDAC. All the findings indicated that DCBLD2 might play a considerably oncogenic role in PDAC with diagnostic, prognostic and therapeutic potential. These preliminary results of bioinformatics analyses need to be further validated in more prospective studies.

9.
Nat Commun ; 12(1): 1518, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750796

RESUMO

Growing evidences suggest that cancer stem cells exhibit many molecular characteristics and phenotypes similar to their ancestral progenitor cells. In the present study, human embryonic stem cells are induced to differentiate into hepatocytes along hepatic lineages to mimic liver development in vitro. A liver progenitor specific gene, RALY RNA binding protein like (RALYL), is identified. RALYL expression is associated with poor prognosis, poor differentiation, and metastasis in clinical HCC patients. Functional studies reveal that RALYL could promote HCC tumorigenicity, self-renewal, chemoresistance, and metastasis. Moreover, molecular mechanism studies show that RALYL could upregulate TGF-ß2 mRNA stability by decreasing N6-methyladenosine (m6A) modification. TGF-ß signaling and the subsequent PI3K/AKT and STAT3 pathways, upregulated by RALYL, contribute to the enhancement of HCC stemness. Collectively, RALYL is a liver progenitor specific gene and regulates HCC stemness by sustaining TGF-ß2 mRNA stability. These findings may inspire precise therapeutic strategies for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Neoplasias Hepáticas/metabolismo , Estabilidade de RNA/fisiologia , Fator de Crescimento Transformador beta2/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Células-Tronco Embrionárias , Feminino , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Regulação para Cima
10.
Front Cell Dev Biol ; 9: 619549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748108

RESUMO

The aim of any surgical resection for pancreatic ductal adenocarcinoma (PDAC) is to achieve tumor-free margins (R0). R0 margins give rise to better outcomes than do positive margins (R1). Nevertheless, postoperative morbidity after R0 resection remains high and prognostic gene signature predicting recurrence risk of patients in this subgroup is blank. Our study aimed to develop a DNA replication-related gene signature to stratify the R0-treated PDAC patients with various recurrence risks. We conducted Cox regression analysis and the LASSO algorithm on 273 DNA replication-related genes and eventually constructed a 7-gene signature. The predictive capability and clinical feasibility of this risk model were assessed in both training and external validation sets. Pathway enrichment analysis showed that the signature was closely related to cell cycle, DNA replication, and DNA repair. These findings may shed light on the identification of novel biomarkers and therapeutic targets for PDAC.

11.
J Transl Med ; 18(1): 360, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958051

RESUMO

BACKGROUND: Cancer stem cells (CSCs) are crucial to the malignant behaviour and poor prognosis of pancreatic ductal adenocarcinoma (PDAC). In recent years, CSC biology has been widely studied, but practical prognostic signatures based on CSC-related genes have not been established or reported in PDAC. METHODS: A signature was developed and validated in seven independent PDAC datasets. The MTAB-6134 cohort was used as the training set, while one local Chinese cohort and five other public cohorts were used for external validation. CSC-related genes with credible prognostic roles were selected to form the signature, and their predictive performance was evaluated by Kaplan-Meier survival, receiver operating characteristic (ROC), and calibration curves. Correlation analysis was employed to clarify the potential biological characteristics of the gene signature. RESULTS: A robust signature comprising DCBLD2, GSDMD, PMAIP1, and PLOD2 was developed. It classified patients into high-risk and low-risk groups. High-risk patients had significantly shorter overall survival (OS) and disease-free survival (DFS) than low-risk patients. Calibration curves and Cox regression analysis demonstrated powerful predictive performance. ROC curves showed the better survival prediction by this model than other models. Functional analysis revealed a positive association between risk score and CSC markers. These results had cross-dataset compatibility. Impact This signature could help further improve the current TNM staging system and provide data for the development of novel personalized therapeutic strategies in the future.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Humanos , Células-Tronco Neoplásicas , Neoplasias Pancreáticas/genética , Prognóstico
12.
Front Oncol ; 10: 616952, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33665167

RESUMO

Regulated necrosis is an emerging type of cell death independent of caspase. Recently, with increasing findings of regulated necrosis in the field of biochemistry and genetics, the underlying molecular mechanisms and signaling pathways of regulated necrosis are gradually understood. Nowadays, there are several modes of regulated necrosis that are tightly related to cancer initiation and development, including necroptosis, ferroptosis, parthanatos, pyroptosis, and so on. What's more, accumulating evidence shows that various compounds can exhibit the anti-cancer effect via inducing regulated necrosis in cancer cells, which indicates that caspase-independent regulated necrosis pathways are potential targets in cancer management. In this review, we expand the molecular mechanisms as well as signaling pathways of multiple modes of regulated necrosis. We also elaborate on the roles they play in tumorigenesis and discuss how each of the regulated necrosis pathways could be therapeutically targeted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA