Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Exp Neurol ; 377: 114780, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38649091

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterized by dopaminergic neuron death and neuroinflammation. Emerging evidence points to the involvement of the transient receptor potential melastatin 2 (TRPM2) channel in neuron death and glial activation in several neurodegenerative diseases. However, the involvement of TRPM2 in PD and specifically its relation to the neuroinflammation aspect of the disease remains poorly understood. Here, we hypothesized that AG490, a TRPM2 inhibitor, can be used as a treatment in a mouse model of PD. Mice underwent stereotaxic surgery for 6-hydroxydopamine (6-OHDA) administration in the right striatum. Motor behavioral tests (apomorphine, cylinder, and rotarod) were performed on day 3 post-injection to confirm the PD model induction. AG490 was then daily injected i.p. between days 3 to 6 after surgery. On day 6, motor behavior was assessed again. Substantia nigra (SNc) and striatum (CPu) were collected for immunohistochemistry, immunoblotting, and RT-qPCR analysis on day 7. Our results revealed that AG490 post-treatment reduced motor behavior impairment and nigrostriatal neurodegeneration. In addition, the compound prevented TRPM2 upregulation and changes of the Akt/GSK-3ß/caspase-3 signaling pathway. The TRPM2 inhibition also avoids the glial morphology changes observed in the PD group. Remarkably, the morphometrical analysis revealed that the ameboid-shaped microglia, found in 6-OHDA-injected animals, were no longer present in the AG490-treated group. These results indicate that AG490 treatment can reduce dopaminergic neuronal death and suppress neuroinflammation in a PD mouse model. Inhibition of TRPM2 by AG490 could then represent a potential therapeutical strategy to be evaluated for PD treatment.


Assuntos
Camundongos Endogâmicos C57BL , Neuroglia , Canais de Cátion TRPM , Tirfostinas , Animais , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/metabolismo , Camundongos , Masculino , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Tirfostinas/farmacologia , Tirfostinas/uso terapêutico , Progressão da Doença , Oxidopamina/toxicidade , Modelos Animais de Doenças , Degeneração Neural/patologia , Degeneração Neural/tratamento farmacológico , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/prevenção & controle , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Substância Negra/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico
2.
Acta Pharmacol Sin ; 44(10): 1935-1947, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37198412

RESUMO

Chemokine receptor 5 (CCR5) is one of the main co-receptors of HIV-1, and has been found to be a potential therapeutic target for stroke. Maraviroc is a classic CCR5 antagonist, which is undergoing clinical trials against stroke. As maraviroc shows poor blood-brain barrier (BBB) permeability, it is of interest to find novel CCR5 antagonists suitable for neurological medication. In this study we characterized the therapeutic potential of a novel CCR5 antagonist A14 in treating ischemic stroke mice. A14 was discovered in screening millions compounds in the Chemdiv library based on the molecular docking diagram of CCR5 and maraviroc. We found that A14 dose-dependently inhibited the CCR5 activity with an IC50 value of 4.29 µM. Pharmacodynamic studies showed that A14 treatment exerted protective effects against neuronal ischemic injury both in vitro and vivo. In a SH-SY5Y cell line overexpressing CCR5, A14 (0.1, 1 µM) significantly alleviated OGD/R-induced cell injury. We found that the expression of CCR5 and its ligand CKLF1 was significantly upregulated during both acute and recovery period in focal cortical stroke mice; oral administration of A14 (20 mg·kg-1·d-1, for 1 week) produced sustained protective effect against motor impairment. A14 treatment had earlier onset time, lower onset dosage and much better BBB permeability compared to maraviroc. MRI analysis also showed that A14 treatment significantly reduced the infarction volume after 1 week of treatment. We further revealed that A14 treatment blocked the protein-protein interaction between CCR5 and CKLF1, increasing the activity of CREB signaling pathway in neurons, thereby improving axonal sprouting and synaptic density after stroke. In addition, A14 treatment remarkably inhibited the reactive proliferation of glial cells after stroke and reduced the infiltration of peripheral immune cells. These results demonstrate that A14 is a promising novel CCR5 antagonist for promoting neuronal repair after ischemic stroke. A14 blocked the protein-protein interaction between CKLF1 and CCR5 after stroke by binding with CCR5 stably, improved the infarct area and promoted motor recovery through reversing the CREB/pCREB signaling which was inhibited by activated CCR5 Gαi pathway, and benefited to the dendritic spines and axons sprouting.


Assuntos
Antagonistas dos Receptores CCR5 , AVC Isquêmico , Neuroblastoma , Acidente Vascular Cerebral , Animais , Humanos , Camundongos , AVC Isquêmico/tratamento farmacológico , Maraviroc/uso terapêutico , Maraviroc/farmacologia , Simulação de Acoplamento Molecular , Receptores CCR5/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Antagonistas dos Receptores CCR5/química , Antagonistas dos Receptores CCR5/farmacologia
3.
Eur J Neurosci ; 55(6): 1483-1491, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35277895

RESUMO

Glioblastoma (GBM) is the most prevalent and aggressive type of primary human brain tumours originating in the central nervous system. Despite the fact that current treatments involve surgery, chemotherapy (Temozolomide), and radiation therapy, the prognosis for patients diagnosed with GBM remains extremely poor. The standard treatment is not only unable to completely eradicate the tumour cells, but also tumour recurrence after surgical resection presents a major challenge. Furthermore, adjuvant therapies including radiation and chemotherapy have high cytotoxicity which causes extensive damage to surrounding healthy tissues and treatment is usually halted before GBM is fully eradicated. Finally, most GBM cases demonstrate temozolomide resistance, a common reason for GBM treatment failure. Therefore, there is an urgent need to develop a suitable alternative therapy that targets GBM specifically and has low cytotoxicity for healthy cells. We previously reported that transient receptor potential melastatin 7 (TRPM7) channels are aberrantly upregulated in GBM, and inhibition of TRPM7 reduced GBM cellular functions including proliferation, migration, and invasion. This suggests TRPM7 is a potential therapeutic target for GBM treatment. In this study, we investigated the effects of the TRPM7 inhibitor, carvacrol, on human GBM cell lines U87 and U251 in vivo. With the use of a flank xenograft GBM mouse model, we demonstrated that carvacrol significantly reduced the tumour size in both mice injected with U87 and U251 cells, decreased p-Akt protein level and increased p-GSK3ß protein levels. Therefore, these results suggest that carvacrol may have therapeutic potential for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Canais de Cátion TRPM , Animais , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Cimenos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Recidiva Local de Neoplasia , Proteínas Serina-Treonina Quinases , Canais de Cátion TRPM/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico
4.
Mol Neurobiol ; 59(3): 1543-1559, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35000153

RESUMO

Parkinson's disease (PD) is characterized by motor impairment and dopaminergic neuronal loss. There is no cure for the disease, and treatments have several limitations. The transient receptor potential melastatin 2 (TRPM2), a calcium-permeable non-selective cation channel, has been reported to be upregulated in neuronal death. However, there are no in vivo studies evaluating TRPM2's role and neuroprotective effects in PD. Here, we test the hypothesis that TRPM2 is upregulated in the 6-hydroxydopamine (6-OHDA) mouse model of PD and that its inhibition, by the AG490, is neuroprotective. For that, AG490 or vehicle were intraperitoneally administered into C57BL/6 mice. Mice then received 6-OHDA into the right striatum. Motor behavior assessments were evaluated 6, 13, and 20 days after surgery using the cylinder and apomorphine-induced rotational testes, and 7, 14, and 21 days after surgery using rotarod test. Brain samples of substantia nigra (SNc) and striatum (CPu) were collected for immunohistochemistry and immunoblotting on days 7 and 21. We showed that TRPM2 protein expression was upregulated in 6-OHDA-treated animals. In addition, AG490 prevented dopaminergic neuron loss, microglial activation, and astrocyte reactivity in 6-OHDA-treated animals. The compound improved motor behaviors and Akt/GSK-3ß/caspase-3 signaling. We conclude that TRPM2 inhibition by AG490 is neuroprotective in the 6-OHDA model and that the TRPM2 channel may represent a potential therapeutic target for PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Canais de Cátion TRPM , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Canais de Cátion TRPM/metabolismo , Tirfostinas
5.
Acta Pharmacol Sin ; 43(4): 759-770, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34108651

RESUMO

Ion channels are ubiquitously expressed in almost all living cells, and are the third-largest category of drug targets, following enzymes and receptors. The transient receptor potential melastatin (TRPM) subfamily of ion channels are important to cell function and survival. Studies have shown upregulation of the TRPM family of ion channels in various brain tumours. Gliomas are the most prevalent form of primary malignant brain tumours with no effective treatment; thus, drug development is eagerly needed. TRPM2 is an essential ion channel for cell function and has important roles in oxidative stress and inflammation. In response to oxidative stress, ADP-ribose (ADPR) is produced, and in turn activates TRPM2 by binding to the NUDT9-H domain on the C-terminal. TRPM2 has been implicated in various cancers and is significantly upregulated in brain tumours. This article reviews the current understanding of TRPM2 in the context of brain tumours and overviews the effects of potential drug therapies targeting TRPM2 including hydrogen peroxide (H2O2), curcumin, docetaxel and selenium, paclitaxel and resveratrol, and botulinum toxin. It is long withstanding knowledge that gliomas are difficult to treat effectively, therefore investigating TRPM2 as a potential therapeutic target for brain tumours may be of considerable interest in the fields of ion channels and pharmacology.


Assuntos
Neoplasias Encefálicas , Canais de Cátion TRPM , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/metabolismo , Adenosina Difosfato Ribose/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Cálcio/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Canais de Cátion TRPM/fisiologia
6.
Cell Calcium ; 101: 102521, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953296

RESUMO

TRPM7 is a non-selective divalent cation channel with an alpha-kinase domain. Corresponding with its broad expression, TRPM7 has a role in a wide range of cell functions, including proliferation, migration, and survival. Growing evidence shows that TRPM7 is also aberrantly expressed in various cancers, including brain cancers. Because ion channels have widespread tissue distribution and result in extensive physiological consequences when dysfunctional, these proteins can be compelling drug targets. In fact, ion channels comprise the third-largest drug target type, following enzymes and receptors. Literature has shown that suppression of TRPM7 results in inhibition of migration, invasion, and proliferation in several human brain tumours. Therefore, TRPM7 presents a potential target for therapeutic brain tumour interventions. This article reviews current literature on TRPM7 as a potential drug target in the context of brain tumours and provides an overview of various selective and non-selective modulators of the channel relevant to pharmacology, oncology, and ion channel function.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas , Canais de Cátion TRPM , Neoplasias Encefálicas/tratamento farmacológico , Humanos , Proteínas Serina-Treonina Quinases , Canais de Cátion TRPM/antagonistas & inibidores
7.
Pharmacol Ther ; 230: 107963, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34375691

RESUMO

In recent decades, technological advantages have allowed scientists to isolate medicinal compounds from marine organisms that exhibit unique structure and bioactivity. The mangrove fungus Xylaria sp. from the South China Sea is rich in metabolites and produces a potent therapeutic compound, xyloketal B. Since its isolation in 2001, xyloketal B has been extensively studied in a wide variety of cell types and in vitro and in vivo disease models. Xyloketal B and its derivatives exhibit cytoprotective effects in cardiovascular and neurodegenerative diseases by reducing oxidative stress, regulating the apoptosis pathway, maintaining ionic balance, mitigating inflammatory responses, and preventing protein aggregation. Xyloketal B has also shown to alleviate lipid accumulation in a non-alcoholic fatty liver disease model. Moreover, xyloketal B treatment induces glioblastoma cell death. This review summarizes our current understanding of xyloketal B in various disease models.


Assuntos
Glioblastoma , Piranos , Morte Celular , Glioblastoma/tratamento farmacológico , Humanos , Estresse Oxidativo , Piranos/química , Piranos/farmacologia
8.
Cell Calcium ; 96: 102400, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33784560

RESUMO

Cancer is the second leading cause of death worldwide and accounted for an estimated 9.6 million deaths, or 1 in 6 deaths, in 2018. Despite recent advances in cancer prevention, diagnosis, and treatment strategies, the burden of this disease continues to grow with each year, with dire physical, emotional, and economic consequences for all levels of society. Classic characteristics of cancer include rapid, uncontrolled cell proliferation and spread of cancerous cells to other parts of the body, a process known as metastasis. Transient receptor potential melastatin 7 (TRPM7), a Ca2+- and Mg2+-permeable nonselective divalent cation channel defined by the atypical presence of an α-kinase within its C-terminal domain, has been implicated, due to its modulation of Ca2+ and Mg2+ influx, in a wide variety of physiological and pathological processes, including cancer. TRPM7 is overexpressed in several cancer types and has been shown to variably increase cellular proliferation, migration, and invasion of tumour cells. However, the relative contribution of TRPM7 kinase domain activity to cancer as opposed to ion flux through its channel pore remains an area of active discovery. In this review, we describe the specific role of the TRPM7 kinase domain in cancer processes as well as mechanisms of regulation and inhibition of the kinase domain.


Assuntos
Neoplasias/enzimologia , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Movimento Celular/fisiologia , Ativação Enzimática/fisiologia , Humanos , Proteínas Serina-Treonina Quinases/química , Canais de Cátion TRPM/química
9.
Asian Pac J Cancer Prev ; 22(2): 333-340, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33639645

RESUMO

OBJECTIVE: Serum protein concentrations are diagnostically and prognostically valuable in cancer and other diseases, but their measurement via blood test is uncomfortable, inconvenient, and costly. This study investigates the possibility of predicting albumin, globulin, and albumin-globulin ratio from easily accessible physical characteristics (height, weight, Body Mass Index, age, gender) and vital signs (systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse pressure, pulse) using advanced machine learning techniques. METHODS: We obtained albumin concentration, globulin concentration, albumin-globulin ratio and predictor information (physical characteristics, vital signs) from physical exam records of 46,951 healthy adult participants in Hangzhou, China. We trained a computational model to predict each serum protein concentration from the predictors and then evaluated the predictive accuracy of each model on an independent portion of the dataset that was not used in model training. We also determined the relative importance of each feature within the model. RESULTS: Prediction accuracies were r=0.540 (95% CI: 0.539-0.540; Pearson r) for albumin, r=0.250 (95% CI: 0.249-0.251) for globulin, and r=0.373 (95% CI: 0.372-0.374) for albumin-globulin ratio. The most important predictive features were age (100% ± 0.0%; mean ± 95% CI of normalized importance), gender (34.4% ± 0.7%), pulse (25.6% ± 1.3%) and Body Mass Index (24.4% ± 2.3%) for albumin, pulse (83.7% ± 3.8%) for globulin, and age (99.2% ± 1.0%), gender (59.2% ± 1.7%), Body Mass Index (46.1% ± 4.2%) and height (40.0% ± 3.8%) for albumin-globulin ratio. CONCLUSIONS: Our models predicted serum protein concentrations with appreciable accuracy showing the promise of this approach. Such models could serve to augment existing tools for identifying "at-risk" individuals for follow-up with a blood test.


Assuntos
Aprendizado de Máquina , Albumina Sérica/metabolismo , Soroglobulinas/metabolismo , Adulto , Fatores Etários , Estatura , Índice de Massa Corporal , Peso Corporal , China , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Fatores Sexuais , Sinais Vitais
10.
Cell Calcium ; 92: 102307, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33080445

RESUMO

Glioblastoma (GBM) is the most common malignant primary brain tumour originating in the CNS. Median patient survival is <15 months with standard treatment which consists of surgery alongside radiation therapy and temozolomide chemotherapy. However, because of the aggressive nature of GBM, and the significant toxicity of these adjuvant therapies, long-term therapeutic effects are unsatisfactory. Thus, there is urgency to identify new drug targets for GBM. Recent evidence shows that the transient receptor potential melastatin 7 (TRPM7) cation channel is aberrantly upregulated in GBM and its inhibition leads to reduction of GBM cellular functions. This suggests that TRPM7 may be a potential drug target for GBM treatment. In this study, we assessed the effects of the specific TRPM7 antagonist waixenicin A on human GBM cell lines U87 or U251 both in vitro and in vivo. First, we demonstrated in vitro that application of waixenicin A reduced TRPM7 protein expression and inhibited the TRPM7-like currents in GBM cells. We also observed reduction of GBM cell viability, migration, and invasion. Using an intracranial xenograft GBM mouse model, we showed that with treatment of waixenicin A, there was increased cleaved caspase 3 activity, alongside reduction in Ki-67, cofilin, and Akt activity in vivo. Together, these data demonstrate higher GBM cell apoptosis, and lower proliferation, migration, invasion and survivability following treatment with waixenicin A.


Assuntos
Acetatos/farmacologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diterpenos/farmacologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Canais de Cátion TRPM/antagonistas & inibidores , Acetatos/administração & dosagem , Fatores de Despolimerização de Actina/metabolismo , Animais , Caspase 3/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/administração & dosagem , Feminino , Humanos , Antígeno Ki-67/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Biológicos , Invasividade Neoplásica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Cátion TRPM/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Acta Pharmacol Sin ; 41(10): 1272-1288, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32855530

RESUMO

Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.


Assuntos
Edema Encefálico/tratamento farmacológico , Canais Iônicos/antagonistas & inibidores , Fármacos Neuroprotetores/uso terapêutico , Animais , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Desenvolvimento de Medicamentos , Humanos , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Canais Iônicos/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo
12.
Sci Rep ; 10(1): 10847, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616722

RESUMO

The rupture of atherosclerotic plaques is essential for cardiovascular and cerebrovascular events. Identification of the key genes related to plaque rupture is an important approach to predict the status of plaque and to prevent the clinical events. In the present study, we downloaded two expression profiles related to the rupture of atherosclerotic plaques (GSE41571 and GSE120521) from GEO database. 11 samples in GSE41571 were used to identify the differentially expressed genes (DEGs) and to construct the weighted gene correlation network analysis (WGCNA) by R software. The gene oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment tool in DAVID website, and the Protein-protein interactions in STRING website were used to predict the functions and mechanisms of genes. Furthermore, we mapped the hub genes extracted from WGCNA to DEGs, and constructed a sub-network using Cytoscape 3.7.2. The key genes were identified by the molecular complex detection (MCODE) in Cytoscape. Further validation was conducted using dataset GSE120521 and human carotid endarterectomy (CEA) plaques. Results: In our study, 868 DEGs were identified in GSE41571. Six modules with 236 hub genes were identified through WGCNA analysis. Among these six modules, blue and brown modules were of the highest correlations with ruptured plaques (with a correlation of 0.82 and -0.9 respectively). 72 hub genes were identified from blue and brown modules. These 72 genes were the most likely ones being related to cell adhesion, extracellular matrix organization, cell growth, cell migration, leukocyte migration, PI3K-Akt signaling, focal adhesion, and ECM-receptor interaction. Among the 72 hub genes, 45 were mapped to the DEGs (logFC > 1.0, p-value < 0.05). The sub-network of these 45 hub genes and MCODE analysis indicated 3 clusters (13 genes) as key genes. They were LOXL1, FBLN5, FMOD, ELN, EFEMP1 in cluster 1, RILP, HLA-DRA, HLA-DMB, HLA-DMA in cluster 2, and SFRP4, FZD6, DKK3 in cluster 3. Further expression detection indicated EFEMP1, BGN, ELN, FMOD, DKK3, FBLN5, FZD6, HLA-DRA, HLA-DMB, HLA-DMA, and RILP might have potential diagnostic value.


Assuntos
Biologia Computacional/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Mapas de Interação de Proteínas , Transcriptoma , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas da Matriz Extracelular/genética , Perfilação da Expressão Gênica , Humanos , Software
13.
Eur J Pharmacol ; 881: 173078, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32505665

RESUMO

Doxorubicin is a leading chemotherapeutic halting cellular replication and inducing p53-dependent apoptosis in cancerous tissue. Like many chemotherapies, doxorubicin damages healthy tissue throughout the body through cellular mechanisms independent of its chemotherapeutic action. Although cognitive impairment is commonly recorded in patients after chemotherapy, the occurrence of doxorubicin-induced "chemo-brain" is debated, as doxorubicin cannot cross the blood-brain barrier. However, the potential of indirect doxorubicin neurotoxicity remains, providing a foundation for doxorubicin-mediated chemo-brain. We present the first meta-analysis of defined cognitive performance of doxorubicin-treated patients. A search of PubMed and MedLine collected 494 studies, 14 of which met analysis criteria. Performance of 511 doxorubicin-treated women with breast cancer was compared to that of 306 healthy controls across measures of defined cognitive modalities. Treated patients experience significant impairment in global cognition compared to controls (g= -0.41, P < 0.001), with select impairment in executive function (g = -0.25, P < 0.0001), language (g = -0.30, P < 0.0001), memory (g = -0.12, P < 0.01) and processing speed (g = -0.28, P < 0.01). Within memory, short-term verbal memory is most significantly affected (g = -0.21, P < 0.01). Impairment in select cognitive modalities (executive function, language, memory, short-term verbal memory, processing speed) is prevalent in doxorubicin-treated patients, with some cognitive functions remaining intact (attention, motor function, visuospatial abilities). This information can guide the development of future interventions to improve quality-of-life (QOL) and doxorubicin-derived therapies that target cytotoxicity to cancerous tissue, avoiding healthy tissue damage, which is mediated by seemingly independent mechanisms.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Comprometimento Cognitivo Relacionado à Quimioterapia/etiologia , Cognição/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Adulto , Idoso , Comprometimento Cognitivo Relacionado à Quimioterapia/diagnóstico , Comprometimento Cognitivo Relacionado à Quimioterapia/psicologia , Função Executiva/efeitos dos fármacos , Feminino , Humanos , Idioma , Memória/efeitos dos fármacos , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco
14.
J Cell Physiol ; 235(5): 4594-4604, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31637708

RESUMO

Gliomas are a group of brain cancers with high mortality and morbidity. Understanding the molecular mechanisms is important for the prevention or treatment of gliomas. The present study was to investigate the effects and mechanisms of long noncoding RNA TRPM2-AS in gliomas proliferation, migration, and invasion. We first compared the levels of TRPM2-AS in 111 patients with glioma to that of the normal control group by a quantitative polymerase chain reaction. The results indicated a significant increase of TRPM2-AS in patients with glioma (2.43 folds of control, p = .0135). MTT methods, wound healing assays, transwell analysis, and clone formation analysis indicated the overexpression of TRPM2-AS promoted the proliferation, migration, and invasion of U251 and U87 cells, while downregulation of TRPM2-AS inhibited the cell proliferation, migration, and invasion significantly (p < .05). To further uncover the mechanisms, bioinformatics analysis was conducted on the expression profiles, GSE40687 and GSE4290, from the Gene Expression Omnibus database. One hundred fifty-six genes were differentially expressed in both datasets (FC > 2.0; p = .05). Among these differentially expressed genes, the level of RGS4 messenger RNA was drastically regulated by TRPM2-AS. Further western-blot analysis indicated the increase of RGS4 protein expression and decrease of p-JNK/JNK and p-c-Jun/c-Jun ratio after TRPM2-AS overexpression. On the other hand, inhibition of TRPM2-AS by small interfering RNA suppressed the expression of RGS4 and promoted the ratios of p-JNK/JNK and p-c-Jun/c-Jun. The present work indicated the mechanisms of the participation of TRPM2-AS in the progression of gliomas might, at least partly, be related to JNK, c-Jun, and RGS4. Our work provided new insights into the underlying mechanisms of glioma cellular functions.


Assuntos
Neoplasias Encefálicas/enzimologia , Movimento Celular , Proliferação de Células , Glioma/enzimologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas RGS/metabolismo , RNA Longo não Codificante/metabolismo , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Fosforilação , Proteínas RGS/genética , RNA Longo não Codificante/genética , Transdução de Sinais
15.
Cell Calcium ; 81: 1-11, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31129471

RESUMO

There is tight interplay between Ca2+ and Cl- flux that can influence brain tumour proliferation, migration and invasion. Glioma is the predominant malignant primary brain tumour, accounting for ˜80% of all cases. Voltage-gated Cl- channel family (ClC) proteins and Cl- intracellular channel (CLIC) proteins are drastically overexpressed in glioma, and are associated with enhanced cell proliferation, migration and invasion. Ca2+ also plays fundamental roles in the phenomenon. Ca2+-activated Cl- channels (CaCC) such as TMEM16A and bestrophin-1 are involved in glioma formation and assist Ca2+ movement from intracellular stores to the plasma membrane. Additionally, the transient receptor protein (TRP) channel TRPC1 can induce activation of ClC-3 by increasing intracellular Ca2+concentrations and activating Ca2+/calmodulin-dependent protein kinase II (CaMKII). Therefore, Ca2+ and Cl-currents can concurrently mediate brain tumour cellular functions. Glioma also expresses volume regulated anion channels (VRACs), which are responsible for the swelling-induced Cl- current, ICl,swell. This current enables glioma cells to perform regulatory volume decrease (RVD) as a survivability mechanism in response to hypoxic conditions within the tumour microenvironment. RVD can also be exploited by glioma for invasion and migration. Effective treatment for glioma is challenging, which can be in part due to prolonged chemotherapy leading to mutations in genes associated with multi-drug resistances (MRP1, Bcl-2, and ABC family). Thus, a potential therapeutic strategy for treatment of glioma can be through the inhibition of selected Cl- channels.


Assuntos
Neoplasias Encefálicas/metabolismo , Canais de Cloreto/metabolismo , Glioma/imunologia , Animais , Neoplasias Encefálicas/patologia , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Carcinogênese , Proliferação de Células , Glioma/patologia , Humanos , Terapia de Alvo Molecular
16.
Acta Pharmacol Sin ; 40(4): 425-440, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30382185

RESUMO

Vascular dementia (VD) results from accumulated damage in the vascular system, which is characterized by progressive impairments in memory and cognition and is second only to Alzheimer's disease (AD) in prevalence among all types of dementia. In contrast to AD, there is no FDA-approved treatment for VD owing to its multiple etiologies. In this study, we investigated whether CZ-7, a new derivative of Claulansine F (Clau F) with verified neuroprotective activity in vitro, could ameliorate the cognitive impairment of rats with permanent occlusion of bilateral common carotid arteries (2VO) and its potential mechanisms of action. The 2VO rats were orally administered CZ-7 (10, 20, 40 mg/kg) from day 27 to day 53 post-surgery. Morris water maze tests conducted at day 48-51 revealed that CZ-7 administration significantly reduced the escape latency in 2VO rats. After the rats were sacrificed on day 53, morphological studies using Nissl and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining showed that administration of CZ-7 markedly attenuated the pathological changes in CA1-CA3 area of the hippocampus, including neuronal cell loss, nuclear shrinkage, and dark staining of neurons, and significantly decreased the chronic cerebral hypoperfusion-induced cell loss. Klüver-Barrera staining study revealed that CZ-7 administration significantly improved the white matter lesions. 8-OHdG and reactive oxygen species (ROS) immunofluorescent analyses showed that CZ-7 administration significantly decreased oxidative stress in CA1-CA3 area of the hippocampus. Finally, we found that the CZ-7-improved oxidative stress might be mediated via the Nrf2 pathway, evidenced by the double immunofluorescent staining of Nrf2 and the elevation of expression levels of oxidative stress proteins HO-1 and NQO1. In conclusion, CZ-7 has therapeutic potential for VD by alleviating oxidative stress injury through Nrf2-mediated antioxidant responses.


Assuntos
Antioxidantes/metabolismo , Artéria Carótida Primitiva/efeitos dos fármacos , Demência Vascular/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/patologia , Demência Vascular/metabolismo , Demência Vascular/patologia , Masculino , Estrutura Molecular , Ratos , Ratos Wistar
17.
Acta Pharmacol Sin ; 40(1): 13-25, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30262824

RESUMO

Ginsenoside Rg1 (Rg1), a saponin extracted from Panax ginseng, has been well documented to be effective against ischemic/reperfusion (I/R) neuronal injury. However, the underlying mechanisms remain obscure. In the present study, we investigated the roles of Nrf2 and miR-144 in the protective effects of Rg1 against I/R-induced neuronal injury. In OGD/R-treated PC12 cells, Rg1 (0.01-1 µmol/L) dose-dependently attenuated the cell injury accompanied by prolonging nuclear accumulation of Nrf2, enhancing the transcriptional activity of Nrf2, as well as promoting the expression of ARE-target genes. The activation of the Nrf2/ARE pathway by Rg1 was independent of disassociation with Keap1, but resulted from post-translational regulations. Knockdown of Nrf2 abolished all the protective changes of Rg1 in OGD/R-treated PC12 cells. Furthermore, Rg1 treatment significantly decreased the expression of miR-144, which downregulated Nrf2 production by targeting its 3'-untranlated region after OGD/R. Knockdown of Nrf2 had no effect on the expression of miR-144, suggesting that miR-144 was an upstream regulator of Nrf2. We revealed that there was a direct binding between Nrf2 and miR-144 in PC12 cells. Application of anti-miR-144 occluded the activation of the Nrf2/ARE pathway by Rg1 in OGD/R-treated PC12 cells. In tMCAO rats, administration of Rg1 (20 mg/kg) significantly alleviated ischemic injury, and activated Nrf2/ARE pathway. The protective effects of Rg1 were abolished by injecting of AAV-HIF-miR-144-shRNA into the predicted ischemic penumbra. In conclusion, our results demonstrate that Rg1 alleviates oxidative stress after I/R through inhibiting miR-144 activity and subsequently promoting the Nrf2/ARE pathway at the post-translational level.


Assuntos
Ginsenosídeos/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , MicroRNAs/genética , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Elementos de Resposta Antioxidante/genética , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
18.
J Mol Endocrinol ; 61(1): 1-12, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29678908

RESUMO

Pancreatic ß-cell Tcf7l2 deletion or its functional knockdown suggested the essential role of this Wnt pathway effector in controlling insulin secretion, glucose homeostasis and ß-cell gene expression. As the LIM homeodomain protein ISL1 is a suggested Wnt pathway downstream target, we hypothesize that it mediates metabolic functions of TCF7L2. We aimed to determine the role of ISL1 in mediating the function of TCF7L2 and the incretin hormone GLP-1 in pancreatic ß-cells. The effect of dominant negative TCF7L2 (TCF7L2DN) mediated Wnt pathway functional knockdown on Isl1 expression was determined in ßTCFDN mouse islets and in the rat insulinoma cell line INS-1 832/13. Luciferase reporter assay and chromatin immunoprecipitation were utilized to determine whether Isl1 is a direct downstream target of Tcf7l2 TCF7L2DN adenovirus infection and siRNA-mediated Isl1 knockdown on ß-cell gene expression were compared. Furthermore, Isl1 knockdown on GLP-1 stimulated ß-catenin S675 phosphorylation and insulin secretion was determined. We found that TCF7L2DN repressed ISL1 levels in ßTCFDN islets and the INS-1 832/13 cell line. Wnt stimulators enhanced Isl1 promoter activity and binding of TCF7L2 on Isl1 promoter. TCF7L2DN adenovirus infection and Isl1 knockdown generated similar repression on expression of ß-cell genes, including the ones that encode GLUT2 and GLP-1 receptor. Either TCF7L2DN adenovirus infection or Isl1 knockdown attenuated GLP-1-stimulated ß-catenin S675 phosphorylation in INS-1 832/13 cells or mouse islets and GLP-1 stimulated insulin secretion in INS-1 832/13 or MIN6 cells. Our observations support the existence of TCF7L2-ISL1 transcriptional network, and we suggest that this network also mediates ß-cell function of GLP-1.


Assuntos
Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Insulina/metabolismo , Proteínas com Homeodomínio LIM/genética , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Ratos , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética
19.
Acta Pharmacol Sin ; 39(5): 695-712, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29671416

RESUMO

Stroke can lead to long-term neurological deficits. Adult neurogenesis, the continuous generation of newborn neurons in distinct regions of the brain throughout life, has been considered as one of the appoaches to restore the neurological function following ischemic stroke. However, ischemia-induced spontaneous neurogenesis is not suffcient, thus cell-based therapy, including infusing exogenous stem cells or stimulating endogenous stem cells to help repair of injured brain, has been studied in numerous animal experiments and some pilot clinical trials. While the effects of cell-based therapy on neurological function during recovery remains unproven in randomized controlled trials, pharmacological agents have been administrated to assist the cell-based therapy. In this review, we summarized the limitations of ischemia-induced neurogenesis and stem-cell transplantation, as well as the potential proneuroregenerative effects of drugs that may enhance efficacy of cell-based therapies. Specifically, we discussed drugs that enhance proliferation, migration, differentiation, survival and function connectivity of newborn neurons, which may restore neurobehavioral function and improve outcomes in stroke patients.


Assuntos
Infarto Cerebral/terapia , Neurogênese/efeitos dos fármacos , Transplante de Células-Tronco , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios Clínicos como Assunto , Humanos , Transdução de Sinais/efeitos dos fármacos
20.
Neuroscience ; 379: 22-31, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29496634

RESUMO

Activity-dependent transcription factors critically coordinate the gene expression program underlying memory formation. The tumor suppressor gene, MEN1, encodes a ubiquitously expressed transcription regulator required for synaptogenesis and synaptic plasticity in invertebrate and vertebrate central neurons. In this study, we investigated the role of MEN1 in long-term memory (LTM) formation in an aversive operant conditioning paradigm in the freshwater pond snail Lymnaea stagnalis (L. stagnalis). We demonstrated that LTM formation is associated with an increased expression of MEN1 coinciding with an up-regulation of creb1 gene expression. In vivo knockdown of MEN1 prevented LTM formation and conditioning-induced changes in neuronal activity in the identified pacemaker neuron RPeD1. Our findings suggest the involvement of a new pathway in LTM consolidation that requires MEN1-mediated gene regulation.


Assuntos
Aprendizagem da Esquiva/fisiologia , Condicionamento Operante/fisiologia , Memória de Longo Prazo/fisiologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Potenciais de Ação/fisiologia , Sequência de Aminoácidos , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Técnicas de Silenciamento de Genes , Lymnaea , Filogenia , Proteínas Proto-Oncogênicas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA