Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(26): e202201766, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35313055

RESUMO

The design and creation of soft porous crystals combining regularity and flexibility may promote potential applications for gas storage and separation due to their deformable framework's responsiveness to external stimuli. The flexibility of metal-organic frameworks (MOFs) relies on alterable degrees of freedom that are mainly provided by organic linkers or the junctions linking organic and inorganic building units. Herein, we report a new dynamic MOF whose flexibility originates from an unprecedented tailorable Mn8 O38 -cluster and shows simultaneous coordination geometry changes and ligand migration that are reversibly driven by guest exchange. This provides an extra degree of freedom to the framework's deformation, resulting in three-dimensional variations in the framework that subtly respond to varied aromatic molecules. The gas adsorption behavior of this flexible MOF was evaluated, and the selective separation of light hydrocarbons and Freon gases is achieved.

2.
Dalton Trans ; 50(47): 17594-17602, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34792061

RESUMO

Three novel iron dinitrogen hydrides, [FeH(iPr-PSiMeP)(N2)(PMe3)] (1), [FeH(iPr-PSiPhP)(N2)(PMe3)] (2), and [FeH(iPr-PSiPh)(N2)(PMe3)] (3), supported by a silyl ligand are synthesized for the first time by changing the electronic effect and steric hindrance of the ligands through the reaction of ligands L1-L3 with Fe(PMe3)4 in a nitrogen atmosphere. The ligands containing an electron-donating group with large steric hindrance on the phosphorus atom are beneficial for the formation of dinitrogen complexes. A penta-coordinate iron hydride [FeH(iPr-PSiPh)(PMe3)2] (4) was formed through the reaction of ligand L3 with Fe(PMe3)4 in an argon atmosphere under the same conditions. The reactions between complexes 1-3 with an atmospheric pressure of dihydrogen gas resulted in Fe(II) dihydrides, [(iPr-PSiMe(µ-H)P)Fe(H)2(PMe3)] (5), [(iPr-PSiPh(µ-H)P)Fe(H)2(PMe3)] (6) and [(iPr-PSiPh(µ-H))Fe(H)2(PMe3)2] (7), with an η2-(Si-H) coordination. The isolation of dihydrides 5-7 demonstrates the ability of the dinitrogen complexes 1-3 to realize the activation of dihydrogen under ambient temperature and pressure. The molecular structures of complexes 1-7 were elucidated by single crystal X-ray diffraction analysis. The iron dinitrogen hydrides 1-3 are effective catalysts for the silylation of dinitrogen under ambient conditions and among them 3 is the best catalyst.

3.
Dalton Trans ; 49(32): 11412, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32729585

RESUMO

Correction for 'Pyridine N-oxide promoted hydrosilylation of carbonyl compounds catalyzed by [PSiP]-pincer iron hydrides' by Guoliang Chang et al., Dalton Trans., 2020, 49, 9349-9354, DOI: 10.1039/D0DT00392A.

4.
Dalton Trans ; 49(27): 9349-9354, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32613981

RESUMO

Five [PSiP]-pincer iron hydrides 1-5, [(2-Ph2PC6H4)2HSiFe(H)(PMe3)2 (1), (2-Ph2PC6H4)2MeSiFe(H)(PMe3)2 (2), (2-Ph2PC6H4)2PhSiFe(H)(PMe3)2 (3), (2-(iPr)2PC6H4)2HSiFe(H)(PMe3) (4), and (2-(iPr)2PC6H4)2MeSiFe(H)(PMe3)2 (5)], were used as catalysts to study the effects of pyridine N-oxide and the electronic properties of [PSiP]-ligands on the catalytic hydrosilylation of carbonyl compounds. It was proved for the first time that this catalytic process could be promoted with pyridine N-oxide as the initiator at 30 °C because the addition of pyridine N-oxide is beneficial for the formation of an unsaturated hydrido iron complex, which is the key intermediate in the catalytic mechanism. Complex 4 as the best catalyst shows excellent catalytic performance. Among the five complexes, complex 3 was new and the molecular structure of complex 3 was determined by single crystal X-ray diffraction. A proposed mechanism was discussed.

5.
Heliyon ; 6(1): e03025, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31909240

RESUMO

Herewith, we report on a method that allows to simultaneously protect both the ∆14,15 bond and the carbonyl group of the symmetrical bis-steroidal diketone 2. We found that environmentally friendly and gas-free chlorination is ideally suited to achieve this goal. This method was discovered during our efforts to methoxylate 2 in a solution of dichloromethane and basic methanol in the presence of diacetoxy iodobenzene. Unexpectedly, the ∆14,15 bonds were chlorinated once as well as twice in a statistical manner. Interestingly, the singly dichlorinated desymmetrized product is an ideal precursor for conduction a series of position selective transformations. Importantly, the carbonyl group present in the nonchlorinated hemisphere can be selectively reduced, olefinated or oximated, while the other carbonyl group stays unaltered. A structurally related "monomeric" steroid derivative undergoes ∆14,15 chlorination and 11-position methoxylation under same conditions. These findings represent a powerful entry for preparing new nonsymmetrical cephalostatin derivatives.

6.
Dalton Trans ; 47(12): 4352-4359, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29492499

RESUMO

The hydrido silyl iron complex (o-Ph2PC6H4SiMe2)Fe(PMe3)3H (2) was obtained via the activation of the Si-H bond of the bidentate silyl ligand o-Ph2P(C6H4)SiMe2H (1) by Fe(PMe3)4. 2 showed good to excellent catalytic activity in both the reduction of aldehydes/ketones and the dehydration of benzamide. In addition, with complex 2 as a catalyst, α,ß-unsaturated carbonyls could be selectively reduced to the corresponding α,ß-unsaturated alcohols. The mechanisms of the formation of 2 and the catalytic dehydration process are proposed and partly experimentally verified.

7.
RSC Adv ; 8(25): 14092-14099, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35539322

RESUMO

The synthesis and characterization of a series of silyl hydrido iron complexes bearing a pincer-type [PSiP] ligand (2-R2PC6H4)2SiH2 (R = Ph (1) and iPr (5)) or (2-Ph2PC6H4)2SiMeH (2) were reported. Preligand 1 reacted with Fe(PMe3)4 to afford complex ((2-Ph2PC6H4)SiH)Fe(H)(PMe3)2 (3) in toluene, which was structurally characterized by X-ray diffraction. ((2-iPr2PC6H4)SiH)Fe(H)(PMe3) (6) could be obtained from the reaction of preligand 5 with Fe(PMe3)4 in toluene. Furthermore, complex ((2-iPr2PC6H4)Si(OMe))Fe(H)(PMe3) (7) was isolated by the reaction of complex 6 with 2 equiv. MeOH in THF. The molecular structure of complex 7 was also determined by single-crystal X-ray analysis. Complexes 3, 4, 6 and 7 showed good to excellent catalytic activity for transfer hydrogenation of aldehydes under mild conditions, using 2-propanol as both solvent and hydrogen donor. α,ß-Unsaturated aldehydes could be selectively reduced to corresponding α,ß-unsaturated alcohols. The catalytic activity of penta-coordinate complex 6 or 7 is stronger than that of hexa-coordinate complex 3 or 4.

8.
Chemistry ; 23(15): 3542-3547, 2017 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-28094459

RESUMO

Two analogous M4 L4 -type tetrahedral cages (smaller: MOC-19; larger: MOC-22) were synthesized and investigated for their interactions with the anticancer drug 5-fluoracil (5-FU) by NMR spectroscopy, high-resolution electrospray-ionization mass spectrometry (HR-ESI-MS), and molecular simulation. The cage's size and window are of importance for the host-guest binding, and consequently the smaller MOC-19 with a more suitable size of cavity window was found to have much stronger hydrogen-bond interactions with 5-FU. The porous nanoparticles of MOC-19 exhibited outstanding behavior for the controlled release of 5-FU in a simulated human body with liquid phosphate-buffered saline solution.


Assuntos
Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/química , Fluoruracila/administração & dosagem , Estruturas Metalorgânicas/química , Antineoplásicos/química , Fluoruracila/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Nanopartículas/química , Tamanho da Partícula , Porosidade , Espectrometria de Massas por Ionização por Electrospray
9.
Inorg Chem ; 48(18): 8977-84, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19691303

RESUMO

CuCl and bis(diphenylphosphanyl)methane (dppm) react in the presence of small amounts of FeCl(3) with PhSeSiMe(3) and Se(SiMe(3))(2) to yield [Cu(30)Fe(2)Se(6)(SePh)(24)(dppm)(4)]. The crystal structure of the compound was determined by single-crystal X-ray analysis to give a mixed copper selenide/selenolate cluster molecule of a new structural type incorporating two central iron atoms. The formal oxidation state of the iron atoms was determined by Mössbauer spectroscopy to be +3, in agreement with quantum chemical calculations and modeling of the magnetic data. In addition, Mössbauer studies show no magnetic hyperfine structure in zero field, and the magnetically perturbed spectrum displays a pattern typical for a diamagnetic species in a transverse field, suggesting a singlet ground state. However, the inclusion of the iron atoms has a distinct influence on the optical properties of the compound compared to similar clusters containing only copper and selenium atoms.

10.
Inorg Chem ; 47(15): 6748-55, 2008 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-18588285

RESUMO

Inclusion compounds of a macrocyclic cavitand cucurbit[8]uril (CB[8]) with cobalt(III) and nickel(II) complexes of 1,3-diaminopropane (tn) and 1,3-diamino-2-propanol (tmOH) { trans-[Co(tn) 2Cl 2]@CB[8]}Cl.14H 2O ( 1), { trans-[Co(tmOH)(tmO)]@CB[8]}Cl 2.22H 2O ( 2), and { trans-[Ni(tmOH) 2]@CB[8]}Cl 2.22H 2O ( 3) were synthesized and characterized by X-ray single crystal analysis, IR spectroscopy, ESI-MS, and by solid-state stripping voltammetry. The encapsulation of trans-[Co(tn) 2Cl 2] (+) within the cavity of CB[8] stabilizes the complex toward ligand substitution reactions in aqueous solution. The electrochemical study demonstrates that CB[8] prefers the oxidized species in trans-[Co(tn) 2Cl 2] (+)/ trans-[Co(tn) 2Cl 2] (0) and trans-[Co(tmO)(tmOH) 2] (2+)/ trans-[Co(tmO)(tmOH) 2] (+) redox couples, but stabilizes the reduced form trans-[Ni(tmOH) 2] (2+) against the oxidized species. The reversibility of voltammogram shapes evidence that for the inclusion compounds 1- 3 electron transfer reactions proceed within the cavity of the host.

11.
Angew Chem Int Ed Engl ; 37(9): 1291-1294, 1998 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29711221

RESUMO

Three new chalcogen-bridged mercury-iron clusters with 7, 14, and 39 mercury centers were obtained from the reaction of tBuSSiMe3 with [Fe(CO)4 (HgX)2 ] (X= Cl, Br). The compounds were isolated in the form of orange crystals that were characterized by X-ray crystallography. The picture on the right shows the structure of the heavy-atom skeleton of [Hg14 Fe12 {Fe(CO)4 }6 S6 (StBu)8 Br18 ] (Hg, Fe, Br, and S are black, diagonally striped, white, and horizontally striped, respectively).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA