Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(3): 1325-1340, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38096103

RESUMO

Nucleotide analogues (NA) are currently employed for treatment of several viral diseases, including COVID-19. NA prodrugs are intracellularly activated to the 5'-triphosphate form. They are incorporated into the viral RNA by the viral polymerase (SARS-CoV-2 nsp12), terminating or corrupting RNA synthesis. For Coronaviruses, natural resistance to NAs is provided by a viral 3'-to-5' exonuclease heterodimer nsp14/nsp10, which can remove terminal analogues. Here, we show that the replacement of the α-phosphate of Bemnifosbuvir 5'-triphosphate form (AT-9010) by an α-thiophosphate renders it resistant to excision. The resulting α-thiotriphosphate, AT-9052, exists as two epimers (RP/SP). Through co-crystallization and activity assays, we show that the Sp isomer is preferentially used as a substrate by nucleotide diphosphate kinase (NDPK), and by SARS-CoV-2 nsp12, where its incorporation causes immediate chain-termination. The same -Sp isomer, once incorporated by nsp12, is also totally resistant to the excision by nsp10/nsp14 complex. However, unlike AT-9010, AT-9052-RP/SP no longer inhibits the N-terminal nucleotidylation domain of nsp12. We conclude that AT-9052-Sp exhibits a unique mechanism of action against SARS-CoV-2. Moreover, the thio modification provides a general approach to rescue existing NAs whose activity is hampered by coronavirus proofreading capacity.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Polifosfatos , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , COVID-19/virologia , Exonucleases , Nucleotídeos/metabolismo , Nucleotidiltransferases , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo
2.
J Med Chem ; 66(7): 4633-4658, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36939673

RESUMO

The rapid identification of early hits by fragment-based approaches and subsequent hit-to-lead optimization represents a challenge for drug discovery. To address this challenge, we created a strategy called "DOTS" that combines molecular dynamic simulations, computer-based library design (chemoDOTS) with encoded medicinal chemistry reactions, constrained docking, and automated compound evaluation. To validate its utility, we applied our DOTS strategy to the challenging target syntenin, a PDZ domain containing protein and oncology target. Herein, we describe the creation of a "best-in-class" sub-micromolar small molecule inhibitor for the second PDZ domain of syntenin validated in cancer cell assays. Key to the success of our DOTS approach was the integration of protein conformational sampling during hit identification stage and the synthetic feasibility ranking of the designed compounds throughout the optimization process. This approach can be broadly applied to other protein targets with known 3D structures to rapidly identify and optimize compounds as chemical probes and therapeutic candidates.


Assuntos
Domínios PDZ , Sinteninas , Descoberta de Drogas , Sindecanas/metabolismo
3.
Eur J Med Chem ; 223: 113601, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34153575

RESUMO

Syntenin stimulates exosome production and its expression is upregulated in many cancers and implicated in the spread of metastatic tumor. These effects are supported by syntenin PDZ domains interacting with syndecans. We therefore aimed to develop, through a fragment-based drug design approach, novel inhibitors targeting syntenin-syndecan interactions. We describe here the optimization of a fragment, 'hit' C58, identified by in vitro screening of a PDZ-focused fragment library, which binds specifically to the syntenin-PDZ2 domain at the same binding site as the syndecan-2 peptide. X-ray crystallographic structures and computational docking were used to guide our optimization process and lead to compounds 45 and 57 (IC50 = 33 µM and 47 µM; respectively), two representatives of syntenin-syndecan interactions inhibitors, that selectively affect the syntenin-exosome release. These findings demonstrate that it is possible to identify small molecules inhibiting syntenin-syndecan interaction and exosome release that may be useful for cancer therapy.


Assuntos
Aminoácidos/farmacologia , Antineoplásicos/farmacologia , Derivados de Benzeno/farmacologia , Exossomos/metabolismo , Sinteninas/metabolismo , Aminoácidos/síntese química , Aminoácidos/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Derivados de Benzeno/síntese química , Derivados de Benzeno/metabolismo , Desenho de Fármacos , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Domínios PDZ , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Sindecanas/metabolismo , Sinteninas/química
4.
Mol Oncol ; 14(12): 3083-3099, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33021050

RESUMO

The concept of polypharmacology involves the interaction of drug molecules with multiple molecular targets. It provides a unique opportunity for the repurposing of already-approved drugs to target key factors involved in human diseases. Herein, we used an in silico target prediction algorithm to investigate the mechanism of action of mebendazole, an antihelminthic drug, currently repurposed in the treatment of brain tumors. First, we confirmed that mebendazole decreased the viability of glioblastoma cells in vitro (IC50 values ranging from 288 nm to 2.1 µm). Our in silico approach unveiled 21 putative molecular targets for mebendazole, including 12 proteins significantly upregulated at the gene level in glioblastoma as compared to normal brain tissue (fold change > 1.5; P < 0.0001). Validation experiments were performed on three major kinases involved in cancer biology: ABL1, MAPK1/ERK2, and MAPK14/p38α. Mebendazole could inhibit the activity of these kinases in vitro in a dose-dependent manner, with a high potency against MAPK14 (IC50  = 104 ± 46 nm). Its direct binding to MAPK14 was further validated in vitro, and inhibition of MAPK14 kinase activity was confirmed in live glioblastoma cells. Consistent with biophysical data, molecular modeling suggested that mebendazole was able to bind to the catalytic site of MAPK14. Finally, gene silencing demonstrated that MAPK14 is involved in glioblastoma tumor spheroid growth and response to mebendazole treatment. This study thus highlighted the role of MAPK14 in the anticancer mechanism of action of mebendazole and provides further rationale for the pharmacological targeting of MAPK14 in brain tumors. It also opens new avenues for the development of novel MAPK14/p38α inhibitors to treat human diseases.


Assuntos
Simulação por Computador , Mebendazol/uso terapêutico , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Concentração Inibidora 50 , Mebendazol/química , Mebendazol/farmacologia , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Inibidores de Proteínas Quinases/farmacologia
5.
Nat Commun ; 7: 10355, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758068

RESUMO

Sam68 and T-STAR are members of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins. T-STAR is a tissue-specific paralogue that regulates the alternative splicing of neuronal pre-mRNAs. STAR proteins differ from most splicing factors, in that they contain a single RNA-binding domain. Their specificity of RNA recognition is thought to arise from their property to homodimerize, but how dimerization influences their function remains unknown. Here, we establish at atomic resolution how T-STAR and Sam68 bind to RNA, revealing an unexpected mode of dimerization different from other members of the STAR family. We further demonstrate that this unique dimerization interface is crucial for their biological activity in splicing regulation, and suggest that the increased RNA affinity through dimer formation is a crucial parameter enabling these proteins to select their functional targets within the transcriptome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Processamento Alternativo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Dimerização , Células HEK293 , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Motivos de Nucleotídeos , Estrutura Terciária de Proteína , RNA/metabolismo , Relação Estrutura-Atividade
6.
Methods ; 65(3): 288-301, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24096002

RESUMO

In the past few years, RNA molecules have been revealed to be at the center of numerous biological processes. Long considered as passive molecules transferring genetic information from DNA to proteins, it is now well established that RNA molecules play important regulatory roles. Associated with that, the number of identified RNA binding proteins (RBPs) has increased considerably and mutations in RNA molecules or RBP have been shown to cause various diseases, such as cancers. It is therefore crucial to understand at the molecular level how these proteins specifically recognise their RNA targets in order to design new generation drug therapies targeting protein-RNA complexes. Nuclear magnetic resonance (NMR) is a particularly well-suited technique to study such protein-RNA complexes at the atomic level and can provide valuable information for new drug discovery programs. In this article, we describe the NMR strategy that we and other laboratories use for screening optimal conditions necessary for structural studies of protein-single stranded RNA complexes, using two proteins, Sam68 and T-STAR, as examples.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Aptâmeros de Nucleotídeos/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a RNA/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Aptâmeros de Nucleotídeos/síntese química , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
7.
FEBS Lett ; 585(17): 2688-92, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21840311

RESUMO

Tyrosine phosphorylations are essential in signal transduction. Recently, a new type of phosphotyrosine binding protein, MEMO (Mediator of ErbB2-driven cell motility), has been reported to bind specifically to an ErbB2-derived phosphorylated peptide encompassing Tyr-1227 (PYD). Structural and functional analyses of variants of this peptide revealed the minimum sequence required for MEMO recognition. Using a docking approach we have generated a structural model for MEMO/PYD complex and compare this new phosphotyrosine motif to SH2 and PTB phosphotyrosine motives.


Assuntos
Ferroproteínas não Heme/metabolismo , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosfotirosina/química , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Motivos de Aminoácidos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Fosfopeptídeos/síntese química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA