Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 334, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184650

RESUMO

Pancreatic ß-cells respond to metabolic stress by upregulating insulin secretion, however the underlying mechanisms remain unclear. Here we show, in ß-cells from overweight humans without diabetes and mice fed a high-fat diet for 2 days, insulin exocytosis and secretion are enhanced without increased Ca2+ influx. RNA-seq of sorted ß-cells suggests altered metabolic pathways early following high fat diet, where we find increased basal oxygen consumption and proton leak, but a more reduced cytosolic redox state. Increased ß-cell exocytosis after 2-day high fat diet is dependent on this reduced intracellular redox state and requires the sentrin-specific SUMO-protease-1. Mice with either pancreas- or ß-cell-specific deletion of this fail to up-regulate exocytosis and become rapidly glucose intolerant after 2-day high fat diet. Mechanistically, redox-sensing by the SUMO-protease requires a thiol group at C535 which together with Zn+-binding suppresses basal protease activity and unrestrained ß-cell exocytosis, and increases enzyme sensitivity to regulation by redox signals.


Assuntos
Dieta Hiperlipídica , Exocitose , Animais , Humanos , Camundongos , Cisteína Endopeptidases/genética , Citosol , Dieta Hiperlipídica/efeitos adversos , Glucose , Peptídeo Hidrolases
2.
JACC CardioOncol ; 5(5): 686-700, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37969640

RESUMO

Background: Although some cancer therapies have overt and/or subclinical cardiotoxic effects that increase subsequent cardiovascular risk in breast cancer patients, we have recently shown that the breast tumor itself can also induce cardiac hypertrophy through the activation of the endothelin system to contribute to cardiovascular risk. However, the extent to which the suppression of the activation of the endothelin system could improve cardiac remodeling in breast cancer patients has yet to be investigated. Objectives: We aimed to retrospectively assess the cardiac morphology/function in patients with breast cancer before receiving cancer chemotherapy and to investigate if the suppression of the activation of the endothelin system improves cardiac remodeling in a mouse model of breast cancer. Methods: Our study involved 28 previously studied women with breast cancer (including 24 after tumor resection) before receiving adjuvant therapy and 17 control healthy women. In addition, we explored how the endothelin system contributed to breast cancer-induced cardiac remodeling using a mouse model of breast cancer. Results: Our results indicate that before chemotherapy, breast cancer patients already exhibit relative cardiac remodeling and subclinical cardiac dysfunction, which was associated with the activation of the endothelin system. Importantly, our mouse data also show that the endothelin receptor blocker atrasentan significantly lessened cardiac remodeling and improved cardiac function in a preclinical model of breast cancer. Conclusions: Although our findings should be further examined in other preclinical/clinical models, our data suggest that endothelin receptor blockers may play a role in cardiac health in individuals with breast cancer. (Understanding and Treating Heart Failure With Preserved Ejection Fraction: Novel Mechanisms, Diagnostics and Potential Therapeutics [Alberta HEART]; NCT02052804 and Multidisciplinary Team Intervention in Cardio-Oncology [TITAN]; NCT01621659).

3.
ESC Heart Fail ; 8(6): 5606-5612, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34617412

RESUMO

AIMS: Recent evidence has demonstrated that ketone bodies, particularly ß-hydroxybutyrate (BHB), are beneficial to the failing heart due to their potential as an alternative energy substrate as well as their anti-inflammatory and anti-oxidative properties. Exogenous supplementation of ketones also helps prevent heart failure (HF) development in rodent models, but whether ketones can be used to treat HF remains unexplored. Herein, we investigated whether chronic supplementation of ketones is beneficial for the heart in a mouse model of established HF. METHODS AND RESULTS: To elevate circulating ketone levels, we utilized (R)-3-hydroxybutyl-(R)-3-hydroxybutyrate [ketone ester (KE)]. C57Bl/6N male mice were subjected to transverse aortic constriction (TAC) surgery. After developing HF, mice were treated with either 20% KE or vehicle via drinking water for 2 weeks. In another cohort, mice 3-4 weeks post-TAC received acute intravenous infusions of BHB or saline for 1 h and their cardiac function was measured. 20% KE significantly elevated blood BHB in mice (P < 0.01) without inducing ketoacidosis or altering other metabolic parameters. Mice with overt HF (30-45% ejection fraction) treated with 20% KE displayed significantly elevated circulating ketone levels compared with vehicle-treated mice (P < 0.05). The significant cardiac dysfunction in mice with HF continued to worsen after 2 weeks of vehicle treatment, whereas this decline was absent in KE-treated mice (mean difference 4.7% ejection fraction; P < 0.01). KE treatment also alleviated TAC-induced cardiomyocyte hypertrophy (P < 0.05) and reduced the TAC-induced elevated cardiac periostin (P < 0.05), a marker of activated fibroblasts. Cardiac fibrosis was also significantly reduced with KE treatment in TAC mice (P < 0.01). In another cohort, acute BHB infusion significantly increased the cardiac output of mice with HF (P < 0.05), providing further support that ketone therapy can be used to treat HF. CONCLUSIONS: We show that chronic treatment of exogenous ketones is of benefit to the failing heart and that chronic ketone elevation may be a therapeutic option for HF. Further investigations to elucidate the underlying mechanism(s) are warranted.


Assuntos
Insuficiência Cardíaca , Cetonas , Animais , Suplementos Nutricionais , Humanos , Cetonas/metabolismo , Cetonas/farmacologia , Cetonas/uso terapêutico , Masculino , Camundongos , Volume Sistólico , Função Ventricular Esquerda
4.
Diabetes ; 70(11): 2626-2638, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34462260

RESUMO

SUMOylation reduces oxidative stress and preserves islet mass at the expense of robust insulin secretion. To investigate a role for the deSUMOylating enzyme sentrin-specific protease 1 (SENP1) following metabolic stress, we put pancreas/gut-specific SENP1 knockout (pSENP1-KO) mice on a high-fat diet (HFD). Male pSENP1-KO mice were more glucose intolerant following HFD than littermate controls but only in response to oral glucose. A similar phenotype was observed in females. Plasma glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) responses were identical in pSENP1-KO and wild-type littermates, including the HFD-induced upregulation of GIP responses. Islet mass was not different, but insulin secretion and ß-cell exocytotic responses to the GLP-1 receptor agonist exendin-4 (Ex4) and GIP were impaired in islets lacking SENP1. Glucagon secretion from pSENP1-KO islets was also reduced, so we generated ß-cell-specific SENP1 KO mice. These phenocopied the pSENP1-KO mice with selective impairment in oral glucose tolerance following HFD, preserved islet mass expansion, and impaired ß-cell exocytosis and insulin secretion to Ex4 and GIP without changes in cAMP or Ca2+ levels. Thus, ß-cell SENP1 limits oral glucose intolerance following HFD by ensuring robust insulin secretion at a point downstream of incretin signaling.


Assuntos
Cisteína Endopeptidases/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Animais , Cisteína Endopeptidases/genética , Glucose/farmacologia , Intolerância à Glucose , Teste de Tolerância a Glucose , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Incretinas , Insulina Regular Humana/farmacologia , Camundongos , Camundongos Knockout , Transativadores/genética , Transativadores/metabolismo
5.
FEBS Lett ; 595(12): 1681-1695, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33876420

RESUMO

Doxorubicin (DOX) is a very effective anticancer agent that is widely used in pediatric cancer patients. Nevertheless, DOX is known to have cardiotoxic effects that may progress to cardiomyopathy later in life. We have recently shown that cotreatment of resveratrol (RES) with DOX in juvenile mice attenuates late-onset hypertension-induced cardiomyopathy. However, the molecular mechanism responsible for these changes remains unknown. Herein, we show that the cardiac NLRP3 inflammasome plays a crucial role in regulating cardiac injury in a DOX -treated juvenile mouse model and the detrimental effects of hypertension in these mice later in life. We further demonstrate that RES significantly reduces systemic inflammation to contribute to the improvements observed in DOX -induced cardiac injury in young mice and late-onset hypertension-induced cardiomyopathy.


Assuntos
Cardiomiopatias/dietoterapia , Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/efeitos adversos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Resveratrol/farmacologia , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Doxorrubicina/farmacologia , Masculino , Camundongos
6.
BMC Cancer ; 20(1): 751, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787791

RESUMO

BACKGROUND: The survival rates of women with breast cancer have improved significantly over the last four decades due to advances in breast cancer early diagnosis and therapy. However, breast cancer survivors have an increased risk of cardiovascular complications following chemotherapy. While this increased risk of later occurring structural cardiac remodeling and/or dysfunction has largely been attributed to the cardiotoxic effects of breast cancer therapies, the effect of the breast tumor itself on the heart prior to cancer treatment has been largely overlooked. Thus, the objectives of this study were to assess the cardiac phenotype in breast cancer patients prior to cancer chemotherapy and to determine the effects of human breast cancer cells on cardiomyocytes. METHODS: We investigated left ventricular (LV) function and structure using cardiac magnetic resonance imaging in women with breast cancer prior to systemic therapy and a control cohort of women with comparable baseline factors. In addition, we explored how breast cancer cells communicate with the cardiomyocytes using cultured human cardiac and breast cancer cells. RESULTS: Our results indicate that even prior to full cancer treatment, breast cancer patients already exhibit relative LV hypertrophy (LVH). We further demonstrate that breast cancer cells likely contribute to cardiomyocyte hypertrophy through the secretion of soluble factors and that at least one of these factors is endothelin-1. CONCLUSION: Overall, the findings of this study suggest that breast cancer cells play a greater role in inducing structural cardiac remodeling than previously appreciated and that tumor-derived endothelin-1 may play a pivotal role in this process.


Assuntos
Neoplasias da Mama/complicações , Comunicação Celular/fisiologia , Endotelina-1/metabolismo , Hipertrofia Ventricular Esquerda/etiologia , Miócitos Cardíacos/fisiologia , Neoplasias da Mama/sangue , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Endotelina-1/sangue , Feminino , Humanos , Hipertrofia/etiologia , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Miócitos Cardíacos/patologia , Comunicação Parácrina , Estudos Retrospectivos , Células Tumorais Cultivadas , Remodelação Ventricular
7.
Circ Heart Fail ; 13(6): e006573, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32493060

RESUMO

BACKGROUND: Previous studies have shown beneficial effects of acute infusion of the primary ketone body, ß-hydroxybutyrate, in heart failure (HF). However, whether chronic elevations in circulating ketones are beneficial remains unknown. METHODS: To chronically elevate circulating ketones in mice, we deleted the expression of the ketolytic, rate-limiting-enzyme, SCOT (succinyl-CoA:3-ketoacid-CoA transferase 1; encoded by Oxct1), in skeletal muscle. Tamoxifen-inducible skeletal muscle-specific Oxct1Muscle-/- knockout (n=32) mice and littermate controls (wild type; WT; n=35) were subjected to transverse aortic constriction (TAC) surgery to induce HF. RESULTS: Deletion of SCOT in skeletal, but not cardiac muscle resulted in elevated concentrations of fasted circulating ß-hydroxybutyrate in knockout mice compared with WT mice (P=0.030). Five weeks following TAC, WT mice progressed to HF, whereas knockout mice with elevated fasting circulating ketones were largely protected from the TAC-induced effects observed in WT mice (ejection fraction, P=0.011; mitral E/A, P=0.012). Furthermore, knockout mice with TAC had attenuated expression of markers of sterile inflammation and macrophage infiltration, which were otherwise elevated in WT mice subjected to TAC. Lastly, addition of ß-hydroxybutyrate to isolated hearts was associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3)-inflammasome activation, which has been previously shown to play a role in contributing to HF-induced cardiac inflammation. CONCLUSIONS: These data show that chronic elevation of circulating ketones protects against the development of HF that is associated with the ability of ß-hydroxybutyrate to directly reduce inflammation. These beneficial effects of ketones were associated with reduced cardiac NLRP3 inflammasome activation, suggesting that ketones may modulate cardiac inflammation via this mechanism.


Assuntos
Ácido 3-Hidroxibutírico/sangue , Coenzima A-Transferases/deficiência , Insuficiência Cardíaca/prevenção & controle , Miocardite/prevenção & controle , Miocárdio/enzimologia , Animais , Coenzima A-Transferases/genética , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/sangue , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Inflamassomos/metabolismo , Preparação de Coração Isolado , Masculino , Camundongos Knockout , Miocardite/sangue , Miocardite/enzimologia , Miocardite/fisiopatologia , Miocárdio/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Regulação para Cima , Disfunção Ventricular Esquerda/sangue , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda , Remodelação Ventricular
8.
Physiol Rep ; 8(8): e14420, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32339440

RESUMO

Pancreatic islet insulin secretion is amplified by both metabolic and receptor-mediated signaling pathways. The incretin-mimetic and DPPIV inhibitor anti-diabetic drugs increase insulin secretion, but in humans this can be variable both in vitro and in vivo. We examined the correlation of GLP-1 induced insulin secretion from human islets with key donor characteristics, glucose-responsiveness, and the ability of glucose to augment exocytosis in ß-cells. No clear correlation was observed between several donor or organ processing parameters and the ability of Exendin 4 to enhance insulin secretion. The ability of glucose to facilitate ß-cell exocytosis was, however, significantly correlated with responses to Exendin 4. We therefore studied the effect of impaired glucose-dependent amplification of insulin exocytosis on responses to DPPIV inhibition (MK-0626) in vivo using pancreas and ß-cell specific sentrin-specific protease-1 (SENP1) mice which exhibit impaired metabolic amplification of insulin exocytosis. Glucose tolerance was improved, and plasma insulin was increased, following either acute or 4 week treatment of wild-type (ßSENP1+/+ ) mice with MK-0626. This DPPIV inhibitor was ineffective in ßSENP1+/- or ßSENP1- / - mice. Finally, we confirm impaired exocytotic responses of ß-cells and reduced insulin secretion from islets of ßSENP1- / - mice and show that the ability of Exendin 4 to enhance exocytosis is lost in these cells. Thus, an impaired ability of glucose to amplify insulin exocytosis results in a deficient effect of DPPIV inhibition to improve in vivo insulin responses and glucose tolerance.


Assuntos
Cisteína Endopeptidases/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Intolerância à Glucose/tratamento farmacológico , Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Animais , Cisteína Endopeptidases/genética , Dipeptidil Peptidase 4/metabolismo , Modelos Animais de Doenças , Exocitose/efeitos dos fármacos , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Humanos , Insulina/sangue , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Triazóis/farmacologia
9.
Cell Rep ; 13(1): 157-167, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26411681

RESUMO

Pancreatic islet failure, involving loss of glucose-stimulated insulin secretion (GSIS) from islet ß cells, heralds the onset of type 2 diabetes (T2D). To search for mediators of GSIS, we performed metabolomics profiling of the insulinoma cell line 832/13 and uncovered significant glucose-induced changes in purine pathway intermediates, including a decrease in inosine monophosphate (IMP) and an increase in adenylosuccinate (S-AMP), suggesting a regulatory role for the enzyme that links the two metabolites, adenylosuccinate synthase (ADSS). Inhibition of ADSS or a more proximal enzyme in the S-AMP biosynthesis pathway, adenylosuccinate lyase, lowers S-AMP levels and impairs GSIS. Addition of S-AMP to the interior of patch-clamped human ß cells amplifies exocytosis, an effect dependent upon expression of sentrin/SUMO-specific protease 1 (SENP1). S-AMP also overcomes the defect in glucose-induced exocytosis in ß cells from a human donor with T2D. S-AMP is, thus, an insulin secretagogue capable of reversing ß cell dysfunction in T2D.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Diabetes Mellitus Tipo 2/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Adenilossuccinato Liase/antagonistas & inibidores , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Adenilossuccinato Sintase/antagonistas & inibidores , Adenilossuccinato Sintase/genética , Adenilossuccinato Sintase/metabolismo , Animais , Linhagem Celular Tumoral , Cisteína Endopeptidases , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Endopeptidases/genética , Endopeptidases/metabolismo , Inibidores Enzimáticos/farmacologia , Exocitose/efeitos dos fármacos , Regulação da Expressão Gênica , Glucose/metabolismo , Guanina/farmacologia , Humanos , Inosina Monofosfato/metabolismo , Insulina/biossíntese , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Metaboloma/genética , Ácido Micofenólico/farmacologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
10.
J Clin Invest ; 125(10): 3847-60, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26389676

RESUMO

Insulin secretion from ß cells of the pancreatic islets of Langerhans controls metabolic homeostasis and is impaired in individuals with type 2 diabetes (T2D). Increases in blood glucose trigger insulin release by closing ATP-sensitive K+ channels, depolarizing ß cells, and opening voltage-dependent Ca2+ channels to elicit insulin exocytosis. However, one or more additional pathway(s) amplify the secretory response, likely at the distal exocytotic site. The mitochondrial export of isocitrate and engagement with cytosolic isocitrate dehydrogenase (ICDc) may be one key pathway, but the mechanism linking this to insulin secretion and its role in T2D have not been defined. Here, we show that the ICDc-dependent generation of NADPH and subsequent glutathione (GSH) reduction contribute to the amplification of insulin exocytosis via sentrin/SUMO-specific protease-1 (SENP1). In human T2D and an in vitro model of human islet dysfunction, the glucose-dependent amplification of exocytosis was impaired and could be rescued by introduction of signaling intermediates from this pathway. Moreover, islet-specific Senp1 deletion in mice caused impaired glucose tolerance by reducing the amplification of insulin exocytosis. Together, our results identify a pathway that links glucose metabolism to the amplification of insulin secretion and demonstrate that restoration of this axis rescues ß cell function in T2D.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Endopeptidases/fisiologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Isocitratos/metabolismo , Animais , Domínio Catalítico , Membrana Celular/metabolismo , Cisteína Endopeptidases , Diabetes Mellitus Tipo 2/patologia , Endopeptidases/biossíntese , Endopeptidases/deficiência , Endopeptidases/genética , Exocitose/efeitos dos fármacos , Exocitose/fisiologia , Técnicas de Inativação de Genes , Glucose/metabolismo , Glucose/farmacologia , Glutationa/farmacologia , Células HEK293 , Homeostase , Humanos , Insulina/farmacologia , Secreção de Insulina , Ilhotas Pancreáticas/fisiopatologia , Isocitrato Desidrogenase/fisiologia , Isocitratos/farmacologia , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , NADP/metabolismo , Especificidade de Órgãos , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Vesículas Secretórias/metabolismo , Transdução de Sinais , Sumoilação
11.
Am J Physiol Endocrinol Metab ; 307(8): E664-73, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25139051

RESUMO

Posttranslational modification by the small ubiquitin-like modifier (SUMO) peptides, known as SUMOylation, is reversed by the sentrin/SUMO-specific proteases (SENPs). While increased SUMOylation reduces ß-cell exocytosis, insulin secretion, and responsiveness to GLP-1, the impact of SUMOylation on islet cell survival is unknown. Mouse islets, INS-1 832/13 cells, or human islets were transduced with adenoviruses to increase either SENP1 or SUMO1 or were transfected with siRNA duplexes to knockdown SENP1. We examined insulin secretion, intracellular Ca²âº responses, induction of endoplasmic reticulum stress markers and inducible nitric oxide synthase (iNOS) expression, and apoptosis by TUNEL and caspase 3 cleavage. Surprisingly, upregulation of SENP1 reduces insulin secretion and impairs intracellular Ca²âº handling. This secretory dysfunction is due to SENP1-induced cell death. Indeed, the detrimental effect of SENP1 on secretory function is diminished when two mediators of ß-cell death, iNOS and NF-κB, are pharmacologically inhibited. Conversely, enhanced SUMOylation protects against IL-1ß-induced cell death. This is associated with reduced iNOS expression, cleavage of caspase 3, and nuclear translocation of NF-κB. Taken together, these findings identify SUMO1 as a novel antiapoptotic protein in islets and demonstrate that reduced viability accounts for impaired islet function following SENP1 up-regulation.


Assuntos
Apoptose , Regulação para Baixo , Endopeptidases/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Sumoilação , Regulação para Cima , Animais , Sinalização do Cálcio , Linhagem Celular , Células Cultivadas , Cisteína Endopeptidases , Endopeptidases/química , Endopeptidases/genética , Humanos , Secreção de Insulina , Células Secretoras de Insulina/citologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Interferência de RNA , Ratos , Proteínas Recombinantes/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Técnicas de Cultura de Tecidos
12.
Diabetes ; 57(5): 1205-15, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18252896

RESUMO

OBJECTIVE: The pro-inflammatory cytokine interleukin-1 beta (IL-1 beta) generates pancreatic beta-cells apoptosis mainly through activation of the c-Jun NH(2)-terminal kinase (JNK) pathway. This study was designed to investigate whether the long-acting agonist of the hormone glucagon-like peptide 1 (GLP-1) receptor exendin-4 (ex-4), which mediates protective effects against cytokine-induced beta-cell apoptosis, could interfere with the JNK pathway. RESEARCH DESIGN AND METHODS: Isolated human, rat, and mouse islets and the rat insulin-secreting INS-1E cells were incubated with ex-4 in the presence or absence of IL-1 beta. JNK activity was assessed by solid-phase JNK kinase assay and quantification of c-Jun expression. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS: Ex-4 inhibited induction of the JNK pathway elicited by IL-1 beta. This effect was mimicked with the use of cAMP-raising agents isobutylmethylxanthine and forskolin and required activation of the protein kinase A. Inhibition of the JNK pathway by ex-4 or IBMX and forskolin was concomitant with a rise in the levels of islet-brain 1 (IB1), a potent blocker of the stress-induced JNK pathway. In fact, ex-4 as well as IBMX and forskolin induced expression of IB1 at the promoter level through cAMP response element binding transcription factor 1. Suppression of IB1 levels with the use of RNA interference strategy impaired the protective effects of ex-4 against apoptosis induced by IL-1 beta. CONCLUSIONS: The data establish the requirement of IB1 in the protective action of ex-4 against apoptosis elicited by IL-1 beta and highlight the GLP-1 mimetics as new potent inhibitors of the JNK signaling induced by cytokines.


Assuntos
Células Secretoras de Insulina/fisiologia , Interleucina-1beta/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Peptídeos/farmacologia , Peçonhas/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Indução Enzimática/efeitos dos fármacos , Exenatida , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/enzimologia , Ilhotas Pancreáticas/citologia , Proteínas Quinases JNK Ativadas por Mitógeno/biossíntese , Proteínas Quinases JNK Ativadas por Mitógeno/efeitos dos fármacos , Camundongos , Ratos
13.
EMBO J ; 25(5): 977-86, 2006 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-16498408

RESUMO

The GTPases Rab3a and Rab27a and their effectors Granuphilin/Slp4 and Noc2 are essential regulators of neuroendocrine secretion. Chronic exposure of pancreatic beta-cells to supraphysiological glucose levels decreased selectively the expression of these proteins. This glucotoxic effect was mimicked by cAMP-raising agents and blocked by PKA inhibitors. We demonstrate that the transcriptional repressor ICER, which is induced in a PKA-dependent manner by chronic hyperglycemia and cAMP-raising agents, is responsible for the decline of the four genes. ICER overexpression diminished the level of Granuphilin, Noc2, Rab3a and Rab27a by binding to cAMP responsive elements located in the promoters of these genes and inhibited exocytosis of beta-cells in response to secretagogues. Moreover, the loss in the expression of the genes of the secretory machinery caused by glucose and cAMP-raising agents was prevented by an antisense construct that reduces ICER levels. We propose that induction of inappropriate ICER levels lead to defects in the secretory process of pancreatic beta-cells possibly contributing, in conjunction with other known deleterious effects of hyperglycemia, to defective insulin release in type 2 diabetes.


Assuntos
Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Exocitose/fisiologia , Regulação da Expressão Gênica/fisiologia , Hiperglicemia/metabolismo , Insulina/metabolismo , Proteínas Repressoras/metabolismo , Animais , AMP Cíclico/metabolismo , DNA Antissenso/farmacologia , Ensaio de Desvio de Mobilidade Eletroforética , Glucose/metabolismo , Humanos , Secreção de Insulina , Peptídeos e Proteínas de Sinalização Intracelular , Ilhotas Pancreáticas/metabolismo , Masculino , Regiões Promotoras Genéticas , Proteínas/genética , Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Elementos de Resposta/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab27 de Ligação ao GTP , Proteínas rab3 de Ligação ao GTP/genética , Proteínas rab3 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA