RESUMO
Autotaxin (ATX), an autocrine motility factor that is highly upregulated in metastatic cancer, is a lysophospholipase D enzyme that produces the lipid second messenger lysophosphatidic acid (LPA) from lysophosphatidylcholine (LPC). Dysregulation of the lysolipid signaling pathway is central to the pathophysiology of numerous cancers, idiopathic pulmonary fibrosis, rheumatoid arthritis, and other inflammatory diseases. Consequently, the ATX/LPA pathway has emerged as an important source of biomarkers and therapeutic targets. Herein we describe development and validation of a fluorogenic analog of LPC (AR-2) that enables visualization of ATX activity in vivo. AR-2 exhibits minimal fluorescence until it is activated by ATX, which substantially increases fluorescence in the near-infrared (NIR) region, the optimal spectral window for in vivo imaging. In mice with orthotopic ATX-expressing breast cancer tumors, ATX activated AR-2 fluorescence. Administration of AR-2 to tumor-bearing mice showed high fluorescence in the tumor and low fluorescence in most healthy tissues with tumor fluorescence correlated with ATX levels. Pretreatment of mice with an ATX inhibitor selectively decreased fluorescence in the tumor. Together these data suggest that fluorescence directly correlates with ATX activity and its tissue expression. The data show that AR-2 is a non-invasive and selective tool that enables visualization and quantitation of ATX-expressing tumors and monitoring ATX activity in vivo.
Assuntos
Diester Fosfórico Hidrolases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Lisofosfatidilcolinas/química , Lisofosfatidilcolinas/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Characterization of polymerized liposomes (PolyPIPosomes) was carried out using a combination of normal dc electrical field-flow fractionation and cyclical electrical field-flow fractionation (CyElFFF) as an analytical technique. The constant nature of the carrier fluid and channel configuration for this technique eliminates many variables associated with multidimensional analysis. CyElFFF uses an oscillating field to induce separation and is performed in the same channel as standard dc electrical field-flow fractionation separation. Theory and experimental methods to characterize nanoparticles in terms of their sizes and electrophoretic mobilities are discussed in this paper. Polystyrene nanoparticles are used for system calibration and characterization of the separation performance, whereas polymerized liposomes are used to demonstrate the applicability of the system to biomedical samples. This paper is also the first to report separation and a higher effective field when CyElFFF is operated at very low applied voltages. The technique is shown to have the ability to quantify both particle size and electrophoretic mobility distributions for colloidal polystyrene nanoparticles and PolyPIPosomes.
Assuntos
Campos Eletromagnéticos , Fracionamento por Campo e Fluxo , Lipossomos/análise , Lipossomos/síntese química , Tamanho da Partícula , PolimerizaçãoRESUMO
Prior work using lipid-based affinity matrices has been done to investigate distinct sets of lipid-binding proteins, and one series of experiments has proven successful in mammalian cells for the proteome-wide identification of lipid-binding proteins. However, most lipid-based proteomics screens require scaled up sample preparation, are often composed of multiple cell types, and are not adapted for simultaneous signal transduction studies. Herein we provide a chemical proteomics strategy that uses cleavable lipid "baits" with broad applicability to diverse biological samples. The novel baits were designed to avoid preparative steps to allow functional proteomics studies when the biological source is a limiting factor. Validation of the chemical baits was first confirmed by the selective isolation of several known endogenous phosphatidylinositol 3-kinase signaling proteins using primary bone marrow-derived macrophages. The use of this technique for cellular proteomics and MS/MS analysis was then demonstrated by the identification of known and potential novel lipid-binding proteins that was confirmed in vitro for several proteins by direct lipid-protein interactions. Further to the identification, the method is also compatible with subsequent signal transduction studies, notably for protein kinase profiling of the isolated lipid-bound protein complexes. Taken together, this integration of minimal scale proteomics, lipid chemistry, and activity-based readouts provides a significant advancement in the ability to identify and study the lipid proteome of single, relevant cell types.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/isolamento & purificação , Macrófagos/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/química , Proteômica/métodos , Animais , Células Cultivadas , Cromatografia de Afinidade , Peptídeos e Proteínas de Sinalização Intracelular/química , Lipídeos/química , Camundongos , Transdução de SinaisRESUMO
Stable phosphoinositide (PIP(n))-containing liposomes were prepared using polydiacetylene photochemistry. Tethered pentacosadiynyl inositol polyphosphate (InsP(n)) analogues of Ins(1,3,4)P(3), Ins(1,4,5)P(3), and Ins(1,3,4,5)P(4) were synthesized, incorporated into vesicles made up of diyne-phosphatidylcholine and -phosphatidylethanolamine, and polymerized by UV irradiation. The polymerized liposome nanoparticles showed markedly increased stability over conventional PIP(n)-containing vesicles as a result of the covalent conjugated ene-yne network in the acyl chains. The polymerized liposomes were specifically recognized by PIP(n) binding PH domains in liposome overlay assays and amplified luminescent proximity homogeneous assays. Moreover, the biotin moiety allowed attachment of the nanoparticles to a streptavidin-coated sensor chips in surface plasmon resonance (SPR) sensor. The PIP(n) headgroups displayed on SPR sensors showed higher affinities for PH domains and PIP(n) monoclonal antibodies than did monomeric PIP(n)-analogues with biotinylated acyl chains.
Assuntos
Lipossomos/química , Fosfatidilinositóis , Proteínas/metabolismo , Sítios de Ligação , Biotinilação , Estabilidade de Medicamentos , Lipídeos , Fosfolipídeos , Fotoquímica , Ligação Proteica , Ressonância de Plasmônio de Superfície/métodosRESUMO
PtdInsPs are critical signaling molecules that regulate diverse cellular functions. One method to study PtdInsP biology involves using synthetic PtdInsP analogs to activate endogenous PtdInsP-mediated events in living cells. Such methodology has been successfully employed to explore the role of several PtdInsP-biological outcomes in the cytoplasm. However, this strategy has not previously been used to examine the function of PtdInsPs in the nucleus of live cells, primarily because there has not been a well-defined PtdInsP-binding protein to provide functional nuclear readouts. Here we have shown that synthetic PtdIns(5)P analogs access and function in the nucleus. We have found that these molecules modify the sub-nuclear localization of PHD finger-containing proteins in live cells and in real time. This work demonstrates that synthetic PtdInsPs and PtdInsP derivatives may be powerful tools for probing nuclear PtdInsP functions. Finally, our work supports a model that endogenous PtdInsPs regulate sub-nuclear localization and function of endogenous nuclear PtdInsP-binding proteins.
Assuntos
Núcleo Celular/fisiologia , Proteínas de Homeodomínio/fisiologia , Fosfatos de Fosfatidilinositol/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Compostos de Boro , Linhagem Celular , Núcleo Celular/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Sinais de Localização Nuclear/fisiologia , Fosfatos de Fosfatidilinositol/metabolismoRESUMO
The completion of the human genome project, the evolution of transcriptional profiling and the emergence of proteomics have focused attention on these areas in the pathophysiology and therapy of cancer. The role of lysophospholipids as potential mediators in cancer pathophysiology, screening and management has taken a major leap forward with the recent cloning of several enzymes involved in the metabolism of lysophospholipids. Lysophospholipids, although small molecules, contain a high "informational" content. Differences include the nature of the phosphate head group, the regiochemistry of the fatty acyl chain on the glyceryl backbone, the presence of ether versus ester linkages to the backbone, and the length and saturation of the fatty acyl or alkyl chain. This informational content is sufficient to result in a marked structure function activity relationship at their cognate receptors. Thus the emerging discipline of "functional lipidomics" is likely to prove as important as genomics and proteomics in terms of early diagnosis, prognosis, and therapy. Lysophospholipid levels are elevated in vivo in a number of pathophysiological states including ascitic fluid from ovarian cancer patients indicating a role in the pathophysiology of this devastating disease. Although controversial, levels of specific lysophospholipids may be altered in the blood of cancer patients providing a potential mechanism for early diagnosis. Several of the enzymes involved in the metabolism of lysophospholipids are aberrant in ovarian and other cancers. Further, the enzymes are active in the interstitial space, rendering them readily accessible to the effects of inhibitors including antibodies, proteins, and small molecules. In support of a role for lysophospholipids in the pathophysiology of cancer, expression of receptors for lysophospholipids is also aberrant in cancer cells from multiple different lineages. All of the cell surface receptors for lysophospholipids belong to the G protein coupled receptor family. As over 40% of all drugs in current use target this family of receptors, lysophospholipid receptors are highly "druggable." Indeed, a number of highly specific agonists and antagonists of lysophospholipid receptors have been identified. A number are in preclinical evaluation as therapeutics. We look forward to the next several years when the role of lysophospholipids in physiology and the pathophysiology and management of cancer and other diseases are fully elucidated.
Assuntos
Lisofosfolipídeos/biossíntese , Lisofosfolipídeos/fisiologia , Neoplasias/fisiopatologia , Animais , Feminino , Humanos , Hidrólise , Lisofosfolipídeos/metabolismoRESUMO
Phosphoinositides (PtdInsPs) play critical roles in cytoplasmic signal transduction pathways. However, their functions in the nucleus are unclear, as specific nuclear receptors for PtdInsPs have not been identified. Here, we show that ING2, a candidate tumor suppressor protein, is a nuclear PtdInsP receptor. ING2 contains a plant homeodomain (PHD) finger, a motif common to many chromatin-regulatory proteins. We find that the PHD fingers of ING2 and other diverse nuclear proteins bind in vitro to PtdInsPs, including the rare PtdInsP species, phosphatidylinositol 5-phosphate (PtdIns(5)P). Further, we demonstrate that the ING2 PHD finger interacts with PtdIns(5)P in vivo and provide evidence that this interaction regulates the ability of ING2 to activate p53 and p53-dependent apoptotic pathways. Together, our data identify the PHD finger as a phosphoinositide binding module and a nuclear PtdInsP receptor, and suggest that PHD-phosphoinositide interactions directly regulate nuclear responses to DNA damage.
Assuntos
Apoptose/genética , Núcleo Celular/metabolismo , Dano ao DNA/genética , Células Eucarióticas/metabolismo , Proteínas de Homeodomínio/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/genética , Proteínas Supressoras de Tumor , 1-Fosfatidilinositol 4-Quinase/metabolismo , Sequência de Aminoácidos/genética , Sequência de Bases/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Núcleo Celular/genética , Genes Supressores de Tumor , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Humanos , Dados de Sequência Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Interferência de RNA , Receptores Citoplasmáticos e Nucleares/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
The myristoylated alanine-rich protein kinase C substrate (MARCKS) may function to sequester phosphoinositides within the plane of the bilayer. To characterize this interaction with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)), a novel spin-labeled derivative, proxyl-PIP(2), was synthesized and characterized. In the presence of molecules known to bind PI(4,5)P(2) the EPR spectrum of this label exhibits an increase in line width because of a decrease in label dynamics, and titration of this probe with neomycin yields the expected 1:1 stoichiometry. Thus, this probe can be used to quantitate the interactions made by the PI(4,5)P(2) head group within the bilayer. In the presence of a peptide comprising the effector domain of MARCKS the EPR spectrum broadens, but the changes in line shape are modulated by both changes in label correlation time and spin-spin interactions. This result indicates that at least some proxyl-PIP(2) are in close proximity when bound to MARCKS and that MARCKS associates with multiple PI(4,5)P(2) molecules. Titration of the proxyl-PIP(2) EPR signal by the MARCKS-derived peptide also suggests that multiple PI(4,5)P(2) molecules interact with MARCKS. Site-directed spin labeling of this peptide shows that the position and conformation of this protein segment at the membrane interface are not altered significantly by binding to PI(4,5)P(2). These data are consistent with the hypothesis that MARCKS functions to sequester multiple PI(4,5)P(2) molecules within the plane of the membrane as a result of interactions that are driven by electrostatic forces.