Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
2.
Nat Commun ; 15(1): 3681, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693155

RESUMO

Defining genetic factors impacting chemotherapy failure can help to better predict response and identify drug resistance mechanisms. However, there is limited understanding of the contribution of inherited noncoding genetic variation on inter-individual differences in chemotherapy response in childhood acute lymphoblastic leukemia (ALL). Here we map inherited noncoding variants associated with treatment outcome and/or chemotherapeutic drug resistance to ALL cis-regulatory elements and investigate their gene regulatory potential and target gene connectivity using massively parallel reporter assays and three-dimensional chromatin looping assays, respectively. We identify 54 variants with transcriptional effects and high-confidence gene connectivity. Additionally, functional interrogation of the top variant, rs1247117, reveals changes in chromatin accessibility, PU.1 binding affinity and gene expression, and deletion of the genomic interval containing rs1247117 sensitizes cells to vincristine. Together, these data demonstrate that noncoding regulatory variants associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to antileukemic agents.


Assuntos
Farmacogenética , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogênicas , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Criança , Resistencia a Medicamentos Antineoplásicos/genética , Variação Genética , Linhagem Celular Tumoral , Vincristina/uso terapêutico , Vincristina/farmacologia , Polimorfismo de Nucleotídeo Único , Alelos , Cromatina/metabolismo , Cromatina/genética , Transativadores/genética , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos
3.
JHEP Rep ; 5(11): 100877, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37869071

RESUMO

Background & Aims: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common complication of obesity with a hallmark feature of hepatic steatosis. Recent data from animal models of MAFLD have demonstrated substantial changes in macrophage composition in the fatty liver. In humans, the relationship between liver macrophage heterogeneity and liver steatosis is less clear. Methods: Liver tissue from 21 participants was collected at time of bariatric surgery and analysed using flow cytometry, immunofluorescence, and H&E microscopy. Single-cell RNA sequencing was also conducted on a subset of samples (n = 3). Intrahepatic triglyceride content was assessed via MRI and tissue histology. Mouse models of hepatic steatosis were used to investigate observations made from human liver tissue. Results: We observed variable degrees of liver steatosis with minimal fibrosis in our participants. Single-cell RNA sequencing revealed four macrophage clusters that exist in the human fatty liver encompassing Kupffer cells and monocyte-derived macrophages (MdMs). The genes expressed in these macrophage subsets were similar to those observed in mouse models of MAFLD. Hepatic CD14+ monocyte/macrophage number correlated with the degree of steatosis. Using mouse models of early liver steatosis, we demonstrate that recruitment of MdMs precedes Kupffer cell loss and liver damage. Electron microscopy of isolated macrophages revealed increased lipid accumulation in MdMs, and ex vivo lipid transfer experiments suggested that MdMs may serve a distinct role in lipid uptake during MAFLD. Conclusions: The human liver in MAFLD contains macrophage subsets that align well with those that appear in mouse models of fatty liver disease. Recruited myeloid cells correlate well with the degree of liver steatosis in humans. MdMs appear to participate in lipid uptake during early stages of MALFD. Impact and implications: Metabolic dysfunction associated fatty liver disease (MAFLD) is extremely common; however, the early inflammatory responses that occur in human disease are not well understood. In this study, we investigated macrophage heterogeneity in human livers during early MAFLD and demonstrated that similar shifts in macrophage subsets occur in human disease that are similar to those seen in preclinical models. These findings are important as they establish a translational link between mouse and human models of disease, which is important for the development and testing of new therapeutic approaches for MAFLD.

4.
Nat Struct Mol Biol ; 30(10): 1592-1606, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37679565

RESUMO

Chromatin regulation involves the selective recruitment of chromatin factors to facilitate DNA repair, replication and transcription. Here we demonstrate the utility of coupling unbiased functional genomics with chromatin immunoprecipitation (CRISPR-ChIP) to identify the factors associated with active chromatin modifications in mammalian cells. Specifically, an integrated reporter containing a cis-regulatory element of interest and a single guide RNA provide a chromatinized template for a direct readout for regulators of histone modifications associated with actively transcribed genes such as H3K4me3 and H3K79me2. With CRISPR-ChIP, we identify all the nonredundant COMPASS complex members required for H3K4me3 and demonstrate that RNA polymerase II is dispensable for the maintenance of H3K4me3. As H3K79me2 has a putative oncogenic function in leukemia cells driven by MLL translocations, using CRISPR-ChIP we reveal a functional partitioning of H3K79 methylation into two distinct regulatory units: an oncogenic DOT1L complex directed by the MLL fusion protein in a Menin-dependent manner and a separate endogenous DOT1L complex, where catalytic activity is directed by MLLT10. Overall, CRISPR-ChIP provides a powerful tool for the unbiased interrogation of the mechanisms underpinning chromatin regulation.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Leucemia , Animais , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Fatores de Transcrição/genética , Proteína de Leucina Linfoide-Mieloide/genética , Cromatina , Leucemia/genética , Imunoprecipitação da Cromatina , Mamíferos/genética
5.
Biochem Biophys Res Commun ; 677: 63-69, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549603

RESUMO

The mammalian cell cycle is divided into four sequential phases, namely G1 (Gap 1), S (synthesis), G2 (Gap 2), and M (mitosis). Wee1, whose turnover is tightly and finely regulated, is a well-known kinase serving as a gatekeeper for the G2/M transition. However, the mechanism underlying the turnover of Wee1 is not fully understood. Autophagy, a highly conserved cellular process, maintains cellular homeostasis by eliminating intracellular aggregations, damaged organelles, and individual proteins. In the present study, we found autophagy deficiency in mouse liver caused G2/M arrest in two mouse models, namely Fip200 and Atg7 liver-specific knockout mice. To uncover the link between autophagy deficiency and G2/M transition, we combined transcriptomic and proteomic analysis for liver samples from control and Atg7 liver-specific knockout mice. The data suggest that the inhibition of autophagy increases the protein level of Wee1 without any alteration of its mRNA abundance. Serum starvation, an autophagy stimulus, downregulates the protein level of Wee1 in vitro. In addition, the half-life of Wee1 is extended by the addition of chloroquine, an autophagy inhibitor. LC3, a central autophagic protein functioning in autophagy substrate selection and autophagosome biogenesis, interacts with Wee1 as assessed by co-immunoprecipitation assay. Furthermore, overexpression of Wee1 leads to G2/M arrest both in vitro and in vivo. Collectively, our data indicate that autophagy could degrade Wee1-a gatekeeper of the G2/M transition, whereas the inhibition of autophagy leads to the accumulation of Wee1 and causes G2/M arrest in mouse liver.


Assuntos
Apoptose , Proteômica , Camundongos , Animais , Proteínas Tirosina Quinases/metabolismo , Proteínas Nucleares/metabolismo , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Mitose , Autofagia , Camundongos Knockout , Mamíferos/metabolismo
6.
medRxiv ; 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36798219

RESUMO

Although acute lymphoblastic leukemia (ALL) is the most common childhood cancer, there is limited understanding of the contribution of inherited genetic variation on inter-individual differences in chemotherapy response. Defining genetic factors impacting therapy failure can help better predict response and identify drug resistance mechanisms. We therefore mapped inherited noncoding variants associated with chemotherapeutic drug resistance and/or treatment outcome to ALL cis-regulatory elements and investigated their gene regulatory potential and genomic connectivity using massively parallel reporter assays and promoter capture Hi-C, respectively. We identified 53 variants with reproducible allele-specific effects on transcription and high-confidence gene targets. Subsequent functional interrogation of the top variant (rs1247117) determined that it disrupted a PU.1 consensus motif and PU.1 binding affinity. Importantly, deletion of the genomic interval containing rs1247117 sensitized ALL cells to vincristine. Together, these data demonstrate that noncoding regulatory variation associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to chemotherapeutic agents in ALL.

7.
Mol Metab ; 70: 101694, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36801448

RESUMO

OBJECTIVE: The mitochondrial pyruvate carrier (MPC) has emerged as a therapeutic target for treating insulin resistance, type 2 diabetes, and nonalcoholic steatohepatitis (NASH). We evaluated whether MPC inhibitors (MPCi) might correct impairments in branched chain amino acid (BCAA) catabolism, which are predictive of developing diabetes and NASH. METHODS: Circulating BCAA concentrations were measured in people with NASH and type 2 diabetes, who participated in a recent randomized, placebo-controlled Phase IIB clinical trial to test the efficacy and safety of the MPCi MSDC-0602K (EMMINENCE; NCT02784444). In this 52-week trial, patients were randomly assigned to placebo (n = 94) or 250 mg MSDC-0602K (n = 101). Human hepatoma cell lines and mouse primary hepatocytes were used to test the direct effects of various MPCi on BCAA catabolism in vitro. Lastly, we investigated how hepatocyte-specific deletion of MPC2 affects BCAA metabolism in the liver of obese mice and MSDC-0602K treatment of Zucker diabetic fatty (ZDF) rats. RESULTS: In patients with NASH, MSDC-0602K treatment, which led to marked improvements in insulin sensitivity and diabetes, had decreased plasma concentrations of BCAAs compared to baseline while placebo had no effect. The rate-limiting enzyme in BCAA catabolism is the mitochondrial branched chain ketoacid dehydrogenase (BCKDH), which is deactivated by phosphorylation. In multiple human hepatoma cell lines, MPCi markedly reduced BCKDH phosphorylation and stimulated branched chain keto acid catabolism; an effect that required the BCKDH phosphatase PPM1K. Mechanistically, the effects of MPCi were linked to activation of the energy sensing AMP-dependent protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) kinase signaling cascades in vitro. BCKDH phosphorylation was reduced in liver of obese, hepatocyte-specific MPC2 knockout (LS-Mpc2-/-) mice compared to wild-type controls concomitant with activation of mTOR signaling in vivo. Finally, while MSDC-0602K treatment improved glucose homeostasis and increased the concentrations of some BCAA metabolites in ZDF rats, it did not lower plasma BCAA concentrations. CONCLUSIONS: These data demonstrate novel cross talk between mitochondrial pyruvate and BCAA metabolism and suggest that MPC inhibition leads to lower plasma BCAA concentrations and BCKDH phosphorylation by activating the mTOR axis. However, the effects of MPCi on glucose homeostasis may be separable from its effects on BCAA concentrations.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Ratos , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Transportadores de Ácidos Monocarboxílicos , Ratos Zucker , Aminoácidos de Cadeia Ramificada/metabolismo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Glucose , Serina-Treonina Quinases TOR/metabolismo
8.
Leukemia ; 36(10): 2374-2383, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36028659

RESUMO

Glucocorticoids (GCs) are a mainstay of contemporary, multidrug chemotherapy in the treatment of childhood acute lymphoblastic leukemia (ALL), and resistance to GCs remains a major clinical concern. Resistance to GCs is predictive of ALL relapse and poor clinical outcome, and therefore represents a major hurdle limiting further improvements in survival rates. While advances have been made in identifying genes implicated in GC resistance, there remains an insufficient understanding of the impact of cis-regulatory disruptions in resistance. To address this, we mapped the gene regulatory response to GCs in two ALL cell lines using functional genomics and high-throughput reporter assays and identified thousands of GC-responsive changes to chromatin state, including the formation of over 250 GC-responsive super-enhancers and a depletion of AP-1 bound cis-regulatory elements implicated in cell proliferation and anti-apoptotic processes. By integrating our GC response maps with genetic and epigenetic datasets in primary ALL cells from patients, we further uncovered cis-regulatory disruptions at GC-responsive genes that impact GC resistance in childhood ALL. Overall, these data indicate that GCs initiate pervasive effects on the leukemia epigenome, and that alterations to the GC gene regulatory network contribute to GC resistance.


Assuntos
Glucocorticoides , Leucemia-Linfoma Linfoblástico de Células Precursoras , Linhagem Celular Tumoral , Cromatina , Resistencia a Medicamentos Antineoplásicos/genética , Epigenômica , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores de Glucocorticoides/genética , Esteroides , Fator de Transcrição AP-1/genética
9.
Blood Adv ; 6(11): 3386-3397, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671062

RESUMO

Understanding the genomic and epigenetic mechanisms of drug resistance in pediatric acute lymphoblastic leukemia (ALL) is critical for further improvements in treatment outcomes. The role of transcriptomic response in conferring resistance to l-asparaginase (LASP) is poorly understood beyond asparagine synthetase (ASNS). We defined reproducible LASP response genes in LASP-resistant and LASP-sensitive ALL cell lines as well as primary leukemia samples from newly diagnosed patients. Defining target genes of the amino acid stress response-related transcription factor activating transcription factor 4 (ATF4) in ALL cell lines using chromatin immunoprecipitation sequencing (ChIP-seq) revealed 45% of genes that changed expression after LASP treatment were direct targets of the ATF4 transcription factor, and 34% of these genes harbored LASP-responsive ATF4 promoter binding events. SLC7A11 was found to be a response gene in cell lines and patient samples as well as a direct target of ATF4. SLC7A11 was also one of only 2.4% of LASP response genes with basal level gene expression that also correlated with LASP ex vivo resistance in primary leukemia cells. Experiments using chemical inhibition of SLC7A11 with sulfasalazine, gene overexpression, and partial gene knockout recapitulated LASP resistance or sensitivity in ALL cell lines. These findings show the importance of assessing changes in gene expression following treatment with an antileukemic agent for its association with drug resistance and highlight that many response genes may not differ in their basal expression in drug-resistant leukemia cells.


Assuntos
Aspartato-Amônia Ligase , Leucemia-Linfoma Linfoblástico de Células Precursoras , Fator 4 Ativador da Transcrição/genética , Aminoácidos/uso terapêutico , Asparaginase/farmacologia , Asparaginase/uso terapêutico , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Linhagem Celular Tumoral , Criança , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
10.
Cell Rep ; 39(4): 110733, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35476997

RESUMO

Hepatic gluconeogenesis from amino acids contributes significantly to diabetic hyperglycemia, but the molecular mechanisms involved are incompletely understood. Alanine transaminases (ALT1 and ALT2) catalyze the interconversion of alanine and pyruvate, which is required for gluconeogenesis from alanine. We find that ALT2 is overexpressed in the liver of diet-induced obese and db/db mice and that the expression of the gene encoding ALT2 (GPT2) is downregulated following bariatric surgery in people with obesity. The increased hepatic expression of Gpt2 in db/db liver is mediated by activating transcription factor 4, an endoplasmic reticulum stress-activated transcription factor. Hepatocyte-specific knockout of Gpt2 attenuates incorporation of 13C-alanine into newly synthesized glucose by hepatocytes. In vivo Gpt2 knockdown or knockout in liver has no effect on glucose concentrations in lean mice, but Gpt2 suppression alleviates hyperglycemia in db/db mice. These data suggest that ALT2 plays a significant role in hepatic gluconeogenesis from amino acids in diabetes.


Assuntos
Diabetes Mellitus , Hiperglicemia , Alanina/farmacologia , Alanina Transaminase/metabolismo , Aminoácidos/metabolismo , Animais , Diabetes Mellitus/metabolismo , Gluconeogênese , Glucose/metabolismo , Humanos , Hiperglicemia/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Obesidade/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548400

RESUMO

The Plasmodium falciparum proteasome is a potential antimalarial drug target. We have identified a series of amino-amide boronates that are potent and specific inhibitors of the P. falciparum 20S proteasome (Pf20S) ß5 active site and that exhibit fast-acting antimalarial activity. They selectively inhibit the growth of P. falciparum compared with a human cell line and exhibit high potency against field isolates of P. falciparum and Plasmodium vivax They have a low propensity for development of resistance and possess liver stage and transmission-blocking activity. Exemplar compounds, MPI-5 and MPI-13, show potent activity against P. falciparum infections in a SCID mouse model with an oral dosing regimen that is well tolerated. We show that MPI-5 binds more strongly to Pf20S than to human constitutive 20S (Hs20Sc). Comparison of the cryo-electron microscopy (EM) structures of Pf20S and Hs20Sc in complex with MPI-5 and Pf20S in complex with the clinically used anti-cancer agent, bortezomib, reveal differences in binding modes that help to explain the selectivity. Together, this work provides insights into the 20S proteasome in P. falciparum, underpinning the design of potent and selective antimalarial proteasome inhibitors.


Assuntos
Compostos de Boro/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/farmacologia , Administração Oral , Animais , Compostos de Boro/administração & dosagem , Compostos de Boro/química , Domínio Catalítico , Humanos , Malária Falciparum/enzimologia , Malária Falciparum/parasitologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Moleculares , Plasmodium falciparum/enzimologia , Inibidores de Proteassoma/administração & dosagem , Inibidores de Proteassoma/química
12.
Nat Rev Endocrinol ; 17(8): 484-495, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34131333

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent liver disease in the world, yet there are still no approved pharmacological therapies to prevent or treat this condition. NAFLD encompasses a spectrum of severity, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Although NASH is linked to an increased risk of hepatocellular carcinoma and cirrhosis and has now become the leading cause of liver failure-related transplantation, the majority of patients with NASH will ultimately die as a result of complications of type 2 diabetes mellitus (T2DM) and cardiometabolic diseases. Importantly, NAFLD is closely linked to obesity and tightly interrelated with insulin resistance and T2DM. Thus, targeting these interconnected conditions and taking a holistic attitude to the treatment of metabolic disease could prove to be a very beneficial approach. This Review will explore the latest relevant literature and discuss the ongoing therapeutic options for NAFLD focused on targeting intermediary metabolism, insulin resistance and T2DM to remedy the global health burden of these diseases.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Hepatopatia Gordurosa não Alcoólica/terapia , Terapias em Estudo/tendências , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Resistência à Insulina/fisiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Obesidade/terapia , Terapias em Estudo/métodos
13.
Leukemia ; 35(11): 3078-3091, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33714976

RESUMO

Acute lymphoblastic leukemia (ALL) is a hematopoietic malignancy comprised of molecular subtypes largely characterized by aneuploidy or recurring chromosomal rearrangements. Despite extensive information on the ALL transcriptome and methylome, there is limited understanding of the ALL chromatin landscape. We therefore mapped accessible chromatin in 24 primary ALL cell biospecimens comprising three common molecular subtypes (DUX4/ERG, ETV6-RUNX1 and hyperdiploid) from patients treated at St. Jude Children's Research Hospital. Our findings highlight extensive chromatin reprogramming in ALL, including the identification ALL subtype-specific chromatin landscapes that are additionally modulated by genetic variation. Chromatin accessibility differences between ALL and normal B-cells implicate the activation of B-cell repressed chromatin domains and detail the disruption of normal B-cell development in ALL. Among ALL subtypes, we uncovered roles for basic helix-loop-helix, homeodomain and activator protein 1 transcription factors in promoting subtype-specific chromatin accessibility and distinct gene regulatory networks. In addition to chromatin subtype-specificity, we further identified over 3500 DNA sequence variants that alter the ALL chromatin landscape and contribute to inter-individual variability in chromatin accessibility. Collectively, our data suggest that subtype-specific chromatin landscapes and gene regulatory networks impact ALL biology and contribute to transcriptomic differences among ALL subtypes.


Assuntos
Cromatina/genética , Aberrações Cromossômicas , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Leucemia-Linfoma Linfoblástico de Células Precursoras/classificação , Fatores de Transcrição/metabolismo , Cromatina/metabolismo , Epigenômica , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Fatores de Transcrição/genética , Transcriptoma
14.
Clin Transl Sci ; 14(4): 1490-1504, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33742760

RESUMO

Vincristine (VCR) is one of the most widely prescribed medications for treating solid tumors and acute lymphoblastic leukemia (ALL) in children and adults. However, its major dose-limiting toxicity is peripheral neuropathy that can disrupt curative therapy. Peripheral neuropathy can also persist into adulthood, compromising quality of life of childhood cancer survivors. Reducing VCR-induced neurotoxicity without compromising its anticancer effects would be ideal. Here, we show that low expression of NHP2L1 is associated with increased sensitivity of primary leukemia cells to VCR, and that concomitant administration of VCR with inhibitors of NHP2L1 increases VCR cytotoxicity in leukemia cells, prolongs survival of ALL xenograft mice, but decreases VCR effects on human-induced pluripotent stem cell-derived neurons and mitigates neurotoxicity in mice. These findings offer a strategy for increasing VCR's antileukemic effects while reducing peripheral neuropathy in patients treated with this widely prescribed medication.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Doenças do Sistema Nervoso Periférico/prevenção & controle , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Ribonucleoproteínas Nucleares Pequenas/antagonistas & inibidores , Vincristina/efeitos adversos , Adolescente , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Células Cultivadas , Criança , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Leucêmica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Neurônios , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Cultura Primária de Células , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Vincristina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
15.
PLoS One ; 16(2): e0247659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630907

RESUMO

Pulsed-electromagnetic-field (PEMF) treatment was found to enhance cellular differentiation of the mouse preosteoblast, MC3T3-E1, to a more osteoblastic phenotype. Differentiation genes such as Alp, BSPI, cFos, Ibsp, Osteocalcin, Pthr1 and Runx2 showed increased expression in response to PEMF stimulation. Detailed molecular mechanisms linking PEMF to the activation of these genes are limited. Two adenosine receptors known to be modulated in response to PEMF, Adora2A and Adora3, were functionally impaired by CRISPR-Cas9-mediated gene disruption, and the consequences of which were studied in the context of PEMF-mediated osteoblastic differentiation. Disruption of Adora2A resulted in a delay of Alp mRNA expression, but not alkaline phosphatase protein expression, which was similar to that found in wild type cells. However, Adora3 disruption resulted in significantly reduced responses at both the alkaline phosphatase mRNA and protein levels throughout the PEMF stimulation period. Defects observed in response to PEMF were mirrored using a chemically defined growth and differentiation-inducing media (DM). Moreover, in cells with Adora2A disruption, gene expression profiles showed a blunted response in cFos and Pthr1 to PEMF treatment; whereas cells with Adora3 disruption had mostly blunted responses in AlpI, BSPI, Ibsp, Osteocalcin and Sp7 gene activation. To demonstrate specificity for Adora3 function, the Adora3 open reading frame was inserted into the ROSA26 locus in Adora3 disrupted cells culminating in rescued PEMF responsiveness and thereby eliminating the possibility of off-target effects. These results lead us to propose that there are complementary and parallel positive roles for adenosine receptor A2A and A3 in PEMF-mediated osteoblast differentiation.


Assuntos
Radiação Eletromagnética , Osteoblastos/citologia , Osteogênese , Receptor A2A de Adenosina , Receptor A3 de Adenosina , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Regulação da Expressão Gênica , Camundongos , Receptor A2A de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo
16.
Liver Transpl ; 27(1): 116-133, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916011

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is becoming the most common indication for liver transplantation. The growing prevalence of NAFLD not only increases the demand for liver transplantation, but it also limits the supply of available organs because steatosis predisposes grafts to ischemia/reperfusion injury (IRI) and many steatotic grafts are discarded. We have shown that monoacylglycerol acyltransferase (MGAT) 1, an enzyme that converts monoacylglycerol to diacylglycerol, is highly induced in animal models and patients with NAFLD and is an important mediator in NAFLD-related insulin resistance. Herein, we sought to determine whether Mogat1 (the gene encoding MGAT1) knockdown in mice with hepatic steatosis would reduce liver injury and improve liver regeneration following experimental IRI. Antisense oligonucleotides (ASO) were used to knockdown the expression of Mogat1 in a mouse model of NAFLD. Mice then underwent surgery to induce IRI. We found that Mogat1 knockdown reduced hepatic triacylglycerol accumulation, but it unexpectedly exacerbated liver injury and mortality following experimental ischemia/reperfusion surgery in mice on a high-fat diet. The increased liver injury was associated with robust effects on the hepatic transcriptome following IRI including enhanced expression of proinflammatory cytokines and chemokines and suppression of enzymes involved in intermediary metabolism. These transcriptional changes were accompanied by increased signs of oxidative stress and an impaired regenerative response. We have shown that Mogat1 knockdown in a mouse model of NAFLD exacerbates IRI and inflammation and prolongs injury resolution, suggesting that Mogat1 may be necessary for liver regeneration following IRI and that targeting this metabolic enzyme will not be an effective treatment to reduce steatosis-associated graft dysfunction or failure.


Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Aciltransferases , Animais , Humanos , Fígado , Camundongos , Camundongos Endogâmicos C57BL
17.
Nat Cancer ; 1(3): 329-344, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32885175

RESUMO

Identification of genomic and epigenomic determinants of drug resistance provides important insights for improving cancer treatment. Using agnostic genome-wide interrogation of mRNA and miRNA expression, DNA methylation, SNPs, CNAs and SNVs/Indels in primary human acute lymphoblastic leukemia cells, we identified 463 genomic features associated with glucocorticoid resistance. Gene-level aggregation identified 118 overlapping genes, 15 of which were confirmed by genome-wide CRISPR screen. Collectively, this identified 30 of 38 (79%) known glucocorticoid-resistance genes/miRNAs and all 38 known resistance pathways, while revealing 14 genes not previously associated with glucocorticoid-resistance. Single cell RNAseq and network-based transcriptomic modelling corroborated the top previously undiscovered gene, CELSR2. Manipulation of CELSR2 recapitulated glucocorticoid resistance in human leukemia cell lines and revealed a synergistic drug combination (prednisolone and venetoclax) that mitigated resistance in mouse xenograft models. These findings illustrate the power of an integrative genomic strategy for elucidating genes and pathways conferring drug resistance in cancer cells.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Genômica , Glucocorticoides/farmacologia , Humanos , Camundongos , MicroRNAs/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
19.
Endocrinology ; 159(9): 3275-3286, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085057

RESUMO

The global obesity epidemic is fueling alarming rates of diabetes, associated with increased risk of cardiovascular disease and cancer. Leptin is a hormone secreted by adipose tissue that is a key regulator of body weight (BW) and energy expenditure. Leptin-deficient humans and mice are obese, diabetic, and infertile and have hepatic steatosis. Although leptin replacement therapy can alleviate the pathologies seen in leptin-deficient patients and mouse models, treatment is costly and requires daily injections. Because adipocytes are the source of leptin secretion, we investigated whether mouse embryonic fibroblasts (MEFs), capable of forming adipocytes, could be injected into ob/ob mice and prevent the metabolic phenotype seen in these leptin-deficient mice. We performed a single subcutaneous injection of MEFs into leptin-deficient ob/ob mice. The MEF injection formed a single fat pad that is histologically similar to white adipose tissue. The ob/ob mice receiving MEFs (obRs) had significantly lower BW compared with nontreated ob/ob mice, primarily because of decreased adipose tissue mass. Additionally, obR mice had significantly less liver steatosis and greater glucose tolerance and insulin sensitivity. obR mice also manifested lower food intake and greater energy expenditure than ob/ob mice, providing a mechanism underlying their metabolic improvement. Furthermore, obRs have sustained metabolic protection and restoration of fertility. Collectively, our studies show the importance of functional adipocytes in preventing metabolic abnormalities seen in leptin deficiency and point to the possibility of cell-based therapies for the treatment of leptin-deficient states.


Assuntos
Adipócitos Brancos/metabolismo , Transplante de Células , Ingestão de Alimentos , Metabolismo Energético , Fígado Gorduroso/metabolismo , Fibroblastos/metabolismo , Resistência à Insulina , Obesidade/metabolismo , Adipócitos Brancos/citologia , Adipogenia , Tecido Adiposo Branco , Animais , Diferenciação Celular , Fibroblastos/citologia , Leptina/genética , Camundongos , Camundongos Obesos , Mutação , Obesidade/genética
20.
Pharm Res ; 35(1): 15, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29302759

RESUMO

PURPOSE: FCGRT encodes the alpha-chain component of the neonatal Fc receptor (FcRn). FcRn is critical for the trafficking of endogenous and exogenous IgG molecules and albumin in various tissues. Few regulators of FcRn expression have been identified. We investigated the epigenetic regulation of FcRn by two microRNAs (hsa-miR-3181 and hsa-miR-3136-3p) acting on FCGRT. METHODS: The binding of candidate microRNAs to the 3'-untranslated region of FCGRT was evaluated using luciferase reporter constructs in CHO cells. The effect of microRNAs on FCGRT mRNA and FcRn protein expression was evaluated using specific microRNA mimics and inhibitor transfections in A549, HEK293 and HepG2 cells. RESULTS: Hsa-miR-3181 mimic reduced luciferase reporter activity by 70.1% (10 nM, P < 0.0001). In A549, HEK293 and HepG2 cells, hsa-miR-3181 decreased FCGRT mRNA expression (48.6%, 51.3% and 43.5% respectively, 25 nM, P < 0.05). The hsa-miR-3181 mimic decreased the expression of FcRn protein by 40% after 48 h (25 nM, P < 0.001). The mature form of hsa-miR-3181 was detected in samples of human liver. CONCLUSIONS: These data suggest that hsa-miR-3181 is an epigenetic regulator of FCGRT expression. The identification of this regulator of FCGRT may provide insights into a potential determinant of interindividual variability in FcRn expression.


Assuntos
Antígenos de Histocompatibilidade Classe I/biossíntese , MicroRNAs/genética , Receptores Fc/biossíntese , Regiões 3' não Traduzidas , Células A549 , Animais , Células CHO , Cricetinae , Cricetulus , Epigênese Genética , Expressão Gênica , Células HEK293 , Células Hep G2 , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Fígado/metabolismo , Luciferases , RNA Mensageiro/genética , Receptores Fc/genética , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA