Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Cell Sci ; 136(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37288670

RESUMO

Flagella are important for eukaryote cell motility, including in sperm, and are vital for life cycle progression of many unicellular eukaryotic pathogens. The '9+2' axoneme in most motile flagella comprises nine outer doublet and two central-pair singlet microtubules. T-shaped radial spokes protrude from the outer doublets towards the central pair and are necessary for effective beating. We asked whether there were radial spoke adaptations associated with parasite lineage-specific properties in apicomplexans and trypanosomatids. Following an orthologue search for experimentally uncharacterised radial spoke proteins (RSPs), we identified and analysed RSP9. Trypanosoma brucei and Leishmania mexicana have an extensive RSP complement, including two divergent RSP9 orthologues, necessary for flagellar beating and swimming. Detailed structural analysis showed that neither orthologue is needed for axoneme assembly in Leishmania. In contrast, Plasmodium has a reduced set of RSPs including a single RSP9 orthologue, deletion of which in Plasmodium berghei leads to failure of axoneme formation, failed male gamete release, greatly reduced fertilisation and inefficient life cycle progression in the mosquito. This indicates contrasting selection pressures on axoneme complexity, likely linked to the different mode of assembly of trypanosomatid versus Plasmodium flagella.


Assuntos
Parasitos , Plasmodium , Masculino , Animais , Axonema/metabolismo , Parasitos/metabolismo , Microtúbulos/metabolismo , Sementes , Proteínas/metabolismo , Flagelos/metabolismo , Eucariotos/metabolismo , Plasmodium/metabolismo , Dineínas/metabolismo
2.
Glycoconj J ; 40(2): 213-223, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738392

RESUMO

Sialoadhesin (CD169/Siglec-1, Sn) is a macrophage receptor that interacts with sialic acids on both host cells and pathogens. It is a type 1 membrane protein with an unusually large number of 17 extracellular immunoglobulin (Ig)-like domains, made up of an N-terminal V-set domain that binds sialic acid and 16 adjacent C2-set domains. The potential importance of 17 Ig domains in Sn for mediating cellular interactions has not been investigated experimentally. In the present study, Chinese Hamster Ovary (CHO) cells were stably transfected with full-length or truncated forms of Sn. Using human red blood cells (RBC) as a model system, CHO cells expressing truncated forms of Sn with 4 or less Ig domains were unable to bind RBC in comparison to the full-length protein. Immunoelectron microscopy of the CHO cells indicated that full-length Sn extends ~ 33 nm from the plasma membrane compared with ~ 14 nm for a truncated form with 6 N-terminal Ig domains. Co-expresssion of Sn-expressing CHO cells with heavily glycosylated membrane proteins of differing predicted lengths resulted in selective modulation of Sn-dependent binding to RBC and supported the hypothesis that Sn has evolved 17 Ig domains to escape inhibitory cis-interactions. The functional significance of the extended length of Sn was demonstrated in experiments with macrophages showing that Sn synergizes with phagocytic receptors FcR and TIM-4 to strongly promote uptake of IgG-opsonized and eryptotic RBC respectively.


Assuntos
Macrófagos , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico , Animais , Cricetinae , Humanos , Células CHO , Cricetulus , Macrófagos/metabolismo , Fagocitose , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo
3.
Front Cell Infect Microbiol ; 12: 882166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573773

RESUMO

The Apicomplexa are famously named for their apical complex, a constellation of organelles at their apical end dedicated to invasion of their host cells. In contrast, at the other end of the cell, the basal complex (BC) has been overshadowed since it is much less prominent and specific functions were not immediately obvious. However, in the past decade a staggering array of functions have been associated with the BC and strides have been made in understanding its structure. Here, these collective insights are supplemented with new data to provide an overview of the understanding of the BC in Toxoplasma gondii. The emerging picture is that the BC is a dynamic and multifunctional complex, with a series of (putative) functions. The BC has multiple roles in cell division: it is the site where building blocks are added to the cytoskeleton scaffold; it exerts a two-step stretch and constriction mechanism as contractile ring; and it is key in organelle division. Furthermore, the BC has numerous putative roles in 'import', such as the recycling of mother cell remnants, the acquisition of host-derived vesicles, possibly the uptake of lipids derived from the extracellular medium, and the endocytosis of micronemal proteins. The latter process ties the BC to motility, whereas an additional role in motility is conferred by Myosin C. Furthermore, the BC acts on the assembly and/or function of the intravacuolar network, which may directly or indirectly contribute to the establishment of chronic tissue cysts. Here we provide experimental support for molecules acting in several of these processes and identify several new BC proteins critical to maintaining the cytoplasmic bridge between divided parasites. However, the dispensable nature of many BC components leaves many questions unanswered regarding its function. In conclusion, the BC in T. gondii is a dynamic and multifunctional structure at the posterior end of the parasite.


Assuntos
Toxoplasma , Divisão Celular , Citoesqueleto/metabolismo , Organelas/metabolismo , Proteínas de Protozoários/genética , Toxoplasma/metabolismo
4.
Genes (Basel) ; 10(10)2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569816

RESUMO

Two probands are reported with pathogenic and likely pathogenic COL5A1 variants (frameshift and splice site) in whom no collagen flowers have been identified with transmission electron microscopy (TEM). One proband fulfils the clinical criteria for classical Ehlers-Danlos syndrome (cEDS) while the other does not and presents with a vascular complication. This case report highlights the significant intrafamilial variability within the cEDS phenotype and demonstrates that patients with pathogenic COL5A1 variants can have an absence of collagen flowers on TEM skin biopsy analysis. This has not been previously reported in the literature and is important when evaluating the significance of a TEM result in patients with clinically suspected cEDS and underscores the relevance of molecular analysis.


Assuntos
Colágeno Tipo V/genética , Derme/ultraestrutura , Síndrome de Ehlers-Danlos/genética , Adulto , Códon sem Sentido , Síndrome de Ehlers-Danlos/patologia , Feminino , Mutação da Fase de Leitura , Humanos , Pessoa de Meia-Idade , Linhagem
5.
Cell Surf ; 5: 100016, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32743133

RESUMO

Toxoplasma gondii is a coccidian parasite with the cat as its definitive host but any warm-blooded animal, including humans, may act as intermediate hosts. It has a worldwide distribution where it may cause acute and chronic toxoplasmosis. Infection can result from ingestion either of tissue cysts in infected meat of intermediate hosts or oocysts found in cat faeces via contaminated water or food. In this review, we highlight how the oocyst and sporocyst walls sustain the persistence and transmission of infective T. gondii parasites from terrestrial and aquatic environments to the host. We further discuss why targeting the oocyst wall structure and molecules may reduce the burden of foodborne and waterborne T. gondii infections.

6.
J Physiol ; 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29917232

RESUMO

KEY POINTS: The carotid body is a peripheral arterial chemoreceptor that regulates ventilation in response to both acute and sustained hypoxia. Type I cells in this organ respond to low oxygen both acutely by depolarization and dense core vesicle secretion and, over the longer term, via cellular proliferation and enhanced ventilatory responses. Using lineage analysis, the present study shows that the Type I cell lineage itself proliferates and expands in response to sustained hypoxia. Inactivation of HIF-2α in Type I cells impairs the ventilatory, proliferative and cell intrinsic (dense core vesicle) responses to hypoxia. Inactivation of PHD2 in Type I cells induces multilineage hyperplasia and ultrastructural changes in dense core vesicles to form paraganglioma-like carotid bodies. These changes, similar to those observed in hypoxia, are dependent on HIF-2α. Taken together, these findings demonstrate a key role for the PHD2-HIF-2α couple in Type I cells with respect to the oxygen sensing functions of the carotid body. ABSTRACT: The carotid body is a peripheral chemoreceptor that plays a central role in mammalian oxygen homeostasis. In response to sustained hypoxia, it manifests a rapid cellular proliferation and an associated increase in responsiveness to hypoxia. Understanding the cellular and molecular mechanisms underlying these processes is of interest both to specialized chemoreceptive functions of that organ and, potentially, to the general physiology and pathophysiology of cellular hypoxia. We have combined cell lineage tracing technology and conditionally inactivated alleles in recombinant mice to examine the role of components of the HIF hydroxylase pathway in specific cell types within the carotid body. We show that exposure to sustained hypoxia (10% oxygen) drives rapid expansion of the Type I, tyrosine hydroxylase expressing cell lineage, with little transdifferentiation to (or from) that lineage. Inactivation of a specific HIF isoform, HIF-2α, in the Type I cells was associated with a greatly reduced proliferation of Type I cells and hypoxic ventilatory responses, with ultrastructural evidence of an abnormality in the action of hypoxia on dense core secretory vesicles. We also show that inactivation of the principal HIF prolyl hydroxylase PHD2 within the Type I cell lineage is sufficient to cause multilineage expansion of the carotid body, with characteristics resembling paragangliomas. These morphological changes were dependent on the integrity of HIF-2α. These findings implicate specific components of the HIF hydroxylase pathway (PHD2 and HIF-2α) within Type I cells of the carotid body with respect to the oxygen sensing and adaptive functions of that organ.

7.
Invest New Drugs ; 36(5): 773-781, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29387992

RESUMO

Effective cytoprotectors that are selective for normal tissues could decrease radiotherapy and chemotherapy sequelae and facilitate the safe administration of higher radiation doses. This could improve the cure rates of radiotherapy for cancer patients. Autophagy is a cytoplasmic cellular process that is necessary for the clearance of damaged or aged proteins and organelles. It is a strong determinant of post-irradiation cell fate. In this study, we investigated the effect of the mTOR-independent small molecule enhancer of autophagy (SMER28) on mouse liver autophagy and post-irradiation recovery of mouse bone marrow and liver. SMER28 enhanced the autophagy flux and improved the survival of normal hepatocytes. This effect was specific for normal cells because SMER28 had no protective effect on hepatoma or other cancer cell line survival in vitro. In vivo subcutaneous administration of SMER28 protected mouse liver and bone marrow against radiation damage and facilitated survival of mice after lethal whole body or abdominal irradiation. These findings open a new field of research on autophagy-targeting radioprotectors with clinical applications in oncology, occupational, and space medicine.


Assuntos
Compostos Alílicos/farmacologia , Autofagia/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Fígado/efeitos dos fármacos , Quinazolinas/farmacologia , Protetores contra Radiação/farmacologia , Animais , Autofagia/efeitos da radiação , Medula Óssea/efeitos da radiação , Linhagem Celular , Humanos , Fígado/efeitos da radiação , Masculino , Camundongos Endogâmicos BALB C , Neoplasias/radioterapia , Serina-Treonina Quinases TOR , Irradiação Corporal Total
8.
Anticancer Res ; 38(1): 227-238, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277777

RESUMO

BACKGROUND/AIM: Amifostine is the only selective normal tissue cytoprotector, approved for the protection against platinum toxicities and radiotherapy-induced xerostomia. Free radical scavenger and DNA repair activities have been attributed to the drug. MATERIALS AND METHODS: We investigated the effect of amifostine on autophagy, lysosomal biogenesis and lipophagy of normal mouse liver exposed to clinically relevant doses of radiation. RESULTS: The study provides evidence that ionizing radiation blocks autophagy activity and lysosomal biogenesis in normal mouse liver. Amifostine, protects the liver autophagic machinery and induces lysosomal biogenesis. By suppressing autophagy, ionizing radiation induces lipid droplet accumulation, while pre-treatment with amifostine protects lipophagy and up-regulates the TIP47 protein and mRNA levels, showing a maintenance of lipid metabolism in the liver cells. CONCLUSION: It is concluded that amifostine, aside to DNA protection activity, exerts its cytoprotective function by preventing radiation-induced blockage of autophagy, lysosomal biogenesis and lipophagy.


Assuntos
Amifostina/farmacologia , Fígado/efeitos dos fármacos , Protetores contra Radiação/farmacologia , Animais , Autofagia/efeitos dos fármacos , Raios gama , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos da radiação , Fígado/ultraestrutura , Lisossomos/metabolismo , Masculino , Camundongos Endogâmicos BALB C
9.
Mol Ther Oncolytics ; 4: 18-30, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28345021

RESUMO

Enadenotucirev (EnAd) is a chimeric group B adenovirus isolated by bioselection from a library of adenovirus serotypes. It replicates selectively in and kills a diverse range of carcinoma cells, shows effective anticancer activity in preclinical systems, and is currently undergoing phase I/II clinical trials. EnAd kills cells more quickly than type 5 adenovirus, and speed of cytotoxicity is dose dependent. The EnAd death pathway does not involve p53, is predominantly caspase independent, and appears to involve a rapid fall in cellular ATP. Infected cells show early loss of membrane integrity; increased exposure of calreticulin; extracellular release of ATP, HSP70, and HMGB1; and influx of calcium. The virus also causes an obvious single membrane blister reminiscent of ischemic cell death by oncosis. In human tumor biopsies maintained in ex vivo culture, EnAd mediated release of pro-inflammatory mediators such as TNF-α, IL-6, and HMGB1. In accordance with this, EnAd-infected tumor cells showed potent stimulation of dendritic cells and CD4+ T cells in a mixed tumor-leukocyte reaction in vitro. Whereas many viruses have evolved for efficient propagation with minimal inflammation, bioselection of EnAd for rapid killing has yielded a virus with a short life cycle that combines potent cytotoxicity with a proinflammatory mechanism of cell death.

10.
Virology ; 505: 162-171, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28260622

RESUMO

Enadenotucirev (EnAd) is a group B oncolytic adenovirus developed for systemic delivery and currently undergoing clinical evaluation for advanced cancer therapy. For differentiated carcinomas, systemic delivery would likely expose virus particles to the basolateral surface of cancer cells rather than the apical surface encountered during natural infection. Here, we compare the ability of EnAd and adenovirus type-5 (Ad5) to infect polarised colorectal carcinoma cells from the apical or basolateral surfaces. Whereas Ad5 infection was more efficient via the apical than basolateral surface, EnAd readily infected cells from either surface. Progeny particles from EnAd were released preferentially via the apical surface for all cell lines and routes of infection. These data further support the utility of group B adenoviruses for systemic delivery and suggest that progeny virus are more likely to be released into the tumour rather than back through the basolateral surface into the blood stream.


Assuntos
Adenovírus Humanos/metabolismo , Antineoplásicos/metabolismo , Neoplasias Colorretais/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/metabolismo , Internalização do Vírus , Adenovírus Humanos/classificação , Células CACO-2 , Linhagem Celular Tumoral , Polaridade Celular , Células Epiteliais/virologia , Células HT29 , Humanos , Microscopia Eletrônica de Transmissão , Vírus Oncolíticos/classificação , Receptores Virais/metabolismo , Junções Íntimas/metabolismo
11.
Sci Rep ; 6: 33654, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27641141

RESUMO

Toxoplasma gondii is a common parasite of humans and animals, which is transmitted via oocysts in cat faeces or tissue cysts in contaminated meat. The robust oocyst and sporocyst walls protect the infective sporozoites from deleterious external attacks including disinfectants. Upon oocyst acquisition, these walls lose their integrity to let the sporozoites excyst and invade host cells following a process that remains poorly understood. Given the resistance of the oocyst wall to digestive enzymes and the ability of oocysts to cause parenteral infections, the present study investigated the possible contribution of macrophages in supporting sporozoite excystation following oocyst internalisation. By using single cell micromanipulations, real-time and time-point imaging techniques, we demonstrated that RAW macrophages could interact rapidly with oocysts and engulfed them by remodelling of their actin cytoskeleton. Internalised oocysts were associated to macrophage acidic compartments and showed evidences of wall disruption. Sporozoites were observed in macrophages containing oocyst remnants or in new macrophages, giving rise to dividing tachyzoites. All together, these results highlight an unexpected role of phagocytic cells in processing T. gondii oocysts, in line with non-classical routes of infection, and open new perspectives to identify chemical factors that lead to oocyst wall disruption under physiological conditions.


Assuntos
Macrófagos/fisiologia , Macrófagos/parasitologia , Oocistos/metabolismo , Esporozoítos/fisiologia , Toxoplasma , Actinas/metabolismo , Animais , Comunicação Celular , Linhagem Celular , Técnicas de Cocultura , Grânulos Citoplasmáticos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Oocistos/ultraestrutura , Fagocitose , Esporozoítos/ultraestrutura , Toxoplasma/imunologia , Toxoplasmose/parasitologia , Toxoplasmose/transmissão
12.
Cell Host Microbe ; 18(6): 670-81, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26651943

RESUMO

Transmissible stages of Toxoplasma gondii store energy in the form of the carbohydrate amylopectin. Here, we show that the Ca(2+)-dependent protein kinase CDPK2 is a critical regulator of amylopectin metabolism. Increased synthesis and loss of degradation of amylopectin in CDPK2 deficient parasites results in the hyperaccumulation of this sugar polymer. A carbohydrate-binding module 20 (CBM20) targets CDPK2 to amylopectin stores, while the EF-hands regulate CDPK2 kinase activity in response to Ca(2+) to modulate amylopectin levels. We identify enzymes involved in amylopectin turnover whose phosphorylation is dependent on CDPK2 activity. Strikingly, accumulation of massive amylopectin granules in CDPK2-deficient bradyzoite stages leads to gross morphological defects and complete ablation of cyst formation in a mouse model. Together these data show that Ca(2+) signaling regulates carbohydrate metabolism in Toxoplasma and that the post-translational control of this pathway is required for normal cyst development.


Assuntos
Amilopectina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Esporos de Protozoários/crescimento & desenvolvimento , Esporos de Protozoários/metabolismo , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Sobrevivência Celular , Deleção de Genes , Camundongos , Proteínas Quinases/genética , Proteínas de Protozoários/genética , Toxoplasmose Animal , Virulência
13.
PLoS Negl Trop Dis ; 9(7): e0003908, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26158273

RESUMO

Neorickettsia sennetsu infection is rarely recognized, with less than 100 globally reported patients over the last 50 years. The disease is thought to be contracted by eating raw fish, a staple of many South-East Asian cuisines. In 2009, the first patient with sennetsu was identified in the Lao PDR (Laos), raising the question as to how common this organism and related species are in patients presenting with fever. We investigated the frequency of N. sennetsu infection at hospitals in diverse areas of Laos. Consenting febrile hospital inpatients from central (Vientiane: n = 1,013), northern (Luang Namtha: n = 453) and southern (Salavan: n = 171) Laos were screened by PCR for N. sennetsu, if no previous positive direct diagnostic test was available. A PCR-restriction fragment length polymorphism assay was developed to differentiate between N. sennetsu, Ehrlichia chaffeensis and Anaplasma phagocytophilum. To allow more detailed studies of N. sennetsu, culture was successfully established using a reference strain (ATCC VR-367), identifying a canine-macrophage cell line (DH82) to be most suitable to visually identify infection. After screening, N. sennetsu was identified and sequence confirmed in four (4/1,637; 0.2%) Lao patients. Despite the previously identified high seroprevalence of N. sennetsu antibodies in the Lao population (~17%), acute N. sennetsu infection with sufficient clinical signs to prompt hospitalization appears to be rare. The reservoir, zoonotic cycle and pathogenicity of N. sennetsu remain unclear and require further investigations.


Assuntos
Infecções por Anaplasmataceae/microbiologia , Febre/microbiologia , Doenças Negligenciadas/microbiologia , Neorickettsia sennetsu/isolamento & purificação , Infecções por Anaplasmataceae/epidemiologia , Animais , Anticorpos Antibacterianos/sangue , Cães , Febre/sangue , Febre/epidemiologia , Humanos , Laos/epidemiologia , Macrófagos/microbiologia , Doenças Negligenciadas/sangue , Doenças Negligenciadas/epidemiologia , Neorickettsia sennetsu/classificação , Neorickettsia sennetsu/genética , Polimorfismo de Fragmento de Restrição , Estudos Prospectivos
14.
J Innate Immun ; 7(4): 375-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25764971

RESUMO

Macrophages provide a bridge linking innate and adaptive immunity. An increased frequency of macrophages and other myeloid cells paired with excessive cytokine production is commonly seen in the aging immune system, known as 'inflamm-aging'. It is presently unclear how healthy macrophages are maintained throughout life and what connects inflammation with myeloid dysfunction during aging. Autophagy, an intracellular degradation mechanism, has known links with aging and lifespan extension. Here, we show for the first time that autophagy regulates the acquisition of major aging features in macrophages. In the absence of the essential autophagy gene Atg7, macrophage populations are increased and key functions such as phagocytosis and nitrite burst are reduced, while the inflammatory cytokine response is significantly increased - a phenotype also observed in aged macrophages. Furthermore, reduced autophagy decreases surface antigen expression and skews macrophage metabolism toward glycolysis. We show that macrophages from aged mice exhibit significantly reduced autophagic flux compared to young mice. These data demonstrate that autophagy plays a critical role in the maintenance of macrophage homeostasis and function, regulating inflammation and metabolism and thereby preventing immunosenescence. Thus, autophagy modulation may prevent excess inflammation and preserve macrophage function during aging, improving immune responses and reducing the morbidity and mortality associated with inflamm-aging.


Assuntos
Envelhecimento/imunologia , Autofagia/imunologia , Macrófagos/imunologia , Proteínas Associadas aos Microtúbulos/imunologia , Envelhecimento/genética , Envelhecimento/patologia , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia , Glicólise/genética , Glicólise/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética
15.
J Eukaryot Microbiol ; 62(3): 346-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25312612

RESUMO

Hammondia hammondi and Toxoplasma gondii are feline coccidians that are morphologically, antigenically, and phylogenitically related. Both parasites multiply asexually and sexually in feline intestinal enterocytes, but H. hammondi remains confined to enterocytes whereas T. gondii also parasitizes extra-intestinal tissues of the cat. Here, we studied multiplication of H. hammondi in feline intestine and compared with T. gondii cycle. Five parasite-free cats were inoculated orally with tissue cysts and free bradyzoites from skeletal muscles of gamma interferon gene knockout mice and killed at 1, 3, 4, 6, and 7 d later. At 1 and 3 d post inoculation (DPI), numerous individual intracellular bradyzoites were detected in histological sections of small intestine. At 4 DPI only schizonts were found and they were located in enterocyte cytoplasm above the host cell nucleus. At 6 and 7 DPI both schizonts and gamonts were seen and they were located in enterocytes. Ultrastucturally, schizogonic and gametogonic development of H. hammondi was similar to T. gondii. However, in H. hammondi merozoites rhoptries were longer, and coiled and contained more micronemes than in T. gondii. Ultrastructural development is illustrated in detail.


Assuntos
Gatos/parasitologia , Coccidiose/veterinária , Enterócitos/parasitologia , Intestino Delgado/parasitologia , Estágios do Ciclo de Vida , Sarcocystidae/fisiologia , Animais , Coccidiose/parasitologia , Coccidiose/patologia , Histocitoquímica , Microscopia Eletrônica de Transmissão , Sarcocystidae/ultraestrutura , Fatores de Tempo , Toxoplasma/fisiologia
16.
Proc Natl Acad Sci U S A ; 111(17): 6437-42, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733931

RESUMO

Unlike most intracellular pathogens that gain access into host cells through endocytic pathways, Toxoplasma gondii initiates infection at the cell surface by active penetration through a moving junction and subsequent formation of a parasitophorous vacuole. Here, we describe a noncanonical pathway for T. gondii infection of macrophages, in which parasites are initially internalized through phagocytosis, and then actively invade from within a phagosomal compartment to form a parasitophorous vacuole. This phagosome to vacuole invasion (PTVI) pathway may represent an intermediary link between the endocytic and the penetrative routes for host cell entry by intracellular pathogens. The PTVI pathway is preferentially used by avirulent strains of T. gondii and confers an infectious advantage over virulent strains for macrophage tropism.


Assuntos
Macrófagos/parasitologia , Fagossomos/parasitologia , Toxoplasma/patogenicidade , Animais , Linhagem Celular , Macrófagos/patologia , Macrófagos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Fagossomos/patologia , Fagossomos/ultraestrutura , Toxoplasma/ultraestrutura , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Tropismo , Vacúolos/parasitologia , Vacúolos/patologia , Vacúolos/ultraestrutura
17.
Mol Cancer Res ; 12(5): 660-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24567527

RESUMO

UNLABELLED: The TNF receptor-associated protein 1 (TRAP1) is a mitochondrial HSP that has been related to drug resistance and protection from apoptosis in colorectal and prostate cancer. Here, the effect of TRAP1 ablation on cell proliferation, survival, apoptosis, and mitochondrial function was determined in non-small cell lung cancer (NSCLC). In addition, the prognostic value of TRAP1 was evaluated in patients with NSCLC. These results demonstrate that TRAP1 knockdown reduces cell growth and clonogenic cell survival. Moreover, TRAP1 downregulation impairs mitochondrial functions such as ATP production and mitochondrial membrane potential as measured by TMRM (tetramethylrhodamine methylester) uptake, but it does not affect mitochondrial density or mitochondrial morphology. The effect of TRAP1 silencing on apoptosis, analyzed by flow cytometry and immunoblot expression (cleaved PARP, caspase-9, and caspase-3) was cell line and context dependent. Finally, the prognostic potential of TRAP1 expression in NSCLC was ascertained via immunohistochemical analysis which revealed that high TRAP1 expression was associated with increased risk of disease recurrence (univariate analysis, P = 0.008; multivariate analysis, HR: 2.554; 95% confidence interval, 1.085-6.012; P = 0.03). In conclusion, these results demonstrate that TRAP1 impacts the viability of NSCLC cells, and that its expression is prognostic in NSCLC. IMPLICATIONS: TRAP1 controls NSCLC proliferation, apoptosis, and mitochondrial function, and its status has prognostic potential in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mitocôndrias/metabolismo , Trifosfato de Adenosina/biossíntese , Idoso , Apoptose/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP90/biossíntese , Proteínas de Choque Térmico HSP90/genética , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Prognóstico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia
18.
Am J Med Genet A ; 164A(2): 386-91, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24311407

RESUMO

Osteogenesis imperfecta (OI) type I is a hereditary disorder of connective tissue (HDCT) characterized by blue or gray sclerae, variable short stature, dentinogenesis imperfecta, hearing loss, and recurrent fractures from infancy. We present four examples of OI type I complicated by valvular heart disease and associated with tissue fragility. The diagnosis of a type I collagen disorder was confirmed by abnormal COL1A1 or COL1A2 gene sequencing. One patient was investigated with electrophoresis of collagens from cultured skin fibroblasts, showing structurally abnormal collagen type I, skin biopsy showed unusual histology and abnormal collagen fibril ultra-structure at electron microscopy. The combined clinical, surgical, histological, ultra-structural, and molecular genetic data suggest the type I collagen defect as contributory to cardiac valvular disease. The degree of tissue fragility experienced at cardiac surgery in these individuals, also reported in a small number of similar case reports, suggests that patients with OI type I need careful pre-operative assessment and consideration of the risks and benefits of cardiac surgery.


Assuntos
Osso e Ossos/patologia , Colágeno Tipo I/genética , Doenças das Valvas Cardíacas/etiologia , Doenças das Valvas Cardíacas/patologia , Mutação , Osteogênese Imperfeita/complicações , Osteogênese Imperfeita/genética , Adulto , Criança , Feminino , Doenças das Valvas Cardíacas/diagnóstico , Ventrículos do Coração/patologia , Humanos , Instabilidade Articular/diagnóstico , Instabilidade Articular/etiologia , Masculino , Pessoa de Meia-Idade , Osteogênese Imperfeita/diagnóstico , Linhagem , Esclera/anormalidades , Pele/patologia , Pele/ultraestrutura
19.
Curr Opin Microbiol ; 16(4): 438-44, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23727286

RESUMO

Apicomplexa are obligate intracellular parasites that cause several human and veterinary diseases worldwide. In contrast to most intracellular pathogens these protozoans are believed to invade a rather passive host cell in a process, that is, tightly linked to the ability of the parasites to move by gliding motility. Indeed specific inhibitors against components of the gliding machinery and the analysis of knockdown mutants demonstrate a linkage of gliding motility and invasion. Intriguingly, new data show that it is possible to block gliding motility, while host cell invasion still occurs. This suggests that either the current models established for host cell invasion need to be critically revised or that alternative, motor independent mechanisms are in place including a more active role of the host cell that can complement a missing actin-myosin-system. Here we discuss some of the discrepancies that need to be addressed for a better understanding of invasion.


Assuntos
Apicomplexa/fisiologia , Adesão Celular , Endocitose , Interações Hospedeiro-Patógeno , Locomoção , Proteínas de Protozoários/metabolismo , Fatores de Virulência/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Humanos , Modelos Biológicos , Miosinas/metabolismo
20.
Clin Infect Dis ; 56(2): 204-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23074307

RESUMO

BACKGROUND: Congenital toxoplasmosis is a serious condition but little is known of the natural history of parasite development and associated fetal tissue destruction. METHODS: Two cases identified by ultrasound underwent induced abortion at 21 and 30 weeks' gestation. At autopsy, the placenta and fetal organs were examined by histology and immunocytochemistry employing anti-Toxoplasma stage-specific antibodies to confirm diagnosis and also provide information on the stage of parasite development. RESULTS: In both cases, maternal serology prior to termination showed both specific immunoglobulin M (IgM) and immunoglobulin G (IgG), whereas retrospective analysis of an earlier sample (12-14 weeks' gestation) showed only IgM reactivity consistent with infection occurring in the first trimester. The finding of a number of tissue cysts but few or no tachyzoites within the placenta and fetal adrenal and heart is characteristic of a chronic infection. However, in contrast, there were still areas of the fetal brain with large numbers of actively dividing, tissue-destructive tachyzoites. CONCLUSIONS: These observations show that continued parasite proliferation and tissue destruction can occur within the fetal brain even when there is a marked maternal immune response including maternal IgG. This finding strongly suggests that there may be benefits from treating cases of recently acquired congenital infection to destroy any remaining proliferating parasites located in immunologically protected sites such as the fetal brain.


Assuntos
Encéfalo/parasitologia , Toxoplasmose Congênita/parasitologia , Adulto , Anticorpos Antiprotozoários/imunologia , Biópsia , Encéfalo/embriologia , Encéfalo/patologia , Feminino , Doenças Fetais/diagnóstico , Doenças Fetais/imunologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Placenta/parasitologia , Placenta/patologia , Gravidez , Diagnóstico Pré-Natal , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/imunologia , Toxoplasmose Congênita/diagnóstico , Toxoplasmose Congênita/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA