Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 283(26): 18076-85, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18430729

RESUMO

The effects of the inactivating peptide from the eukaryotic Shaker BK(+) channel (the ShB peptide) on the prokaryotic KcsA channel have been studied using patch clamp methods. The data show that the peptide induces rapid, N-type inactivation in KcsA through a process that includes functional uncoupling of channel gating. We have also employed saturation transfer difference (STD) NMR methods to map the molecular interactions between the inactivating peptide and its channel target. The results indicate that binding of the ShB peptide to KcsA involves the ortho and meta protons of Tyr(8), which exhibit the strongest STD effects; the C4H in the imidazole ring of His(16); the methyl protons of Val(4), Leu(7), and Leu(10) and the side chain amine protons of one, if not both, the Lys(18) and Lys(19) residues. When a noninactivating ShB-L7E mutant is used in the studies, binding to KcsA is still observed but involves different amino acids. Thus, the strongest STD effects are now seen on the methyl protons of Val(4) and Leu(10), whereas His(16) seems similarly affected as before. Conversely, STD effects on Tyr(8) are strongly diminished, and those on Lys(18) and/or Lys(19) are abolished. Additionally, Fourier transform infrared spectroscopy of KcsA in presence of (13)C-labeled peptide derivatives suggests that the ShB peptide, but not the ShB-L7E mutant, adopts a beta-hairpin structure when bound to the KcsA channel. Indeed, docking such a beta-hairpin structure into an open pore model for K(+) channels to simulate the inactivating peptide/channel complex predicts interactions well in agreement with the experimental observations.


Assuntos
Proteínas de Bactérias/química , Epitopos/química , Canais de Potássio/química , Sequência de Aminoácidos , Aminoácidos/química , Eletrofisiologia , Proteínas de Escherichia coli/química , Lisina/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Mutação , Peptídeos/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Ligação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Cell Mol Med ; 12(3): 829-75, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18266954

RESUMO

Membranes constitute a meeting point for lipids and proteins. Not only do they define the entity of cells and cytosolic organelles but they also display a wide variety of important functions previously ascribed to the activity of proteins alone. Indeed, lipids have commonly been considered a mere support for the transient or permanent association of membrane proteins, while acting as a selective cell/organelle barrier. However, mounting evidence demonstrates that lipids themselves regulate the location and activity of many membrane proteins, as well as defining membrane microdomains that serve as spatio-temporal platforms for interacting signalling proteins. Membrane lipids are crucial in the fission and fusion of lipid bilayers and they also act as sensors to control environmental or physiological conditions. Lipids and lipid structures participate directly as messengers or regulators of signal transduction. Moreover, their alteration has been associated with the development of numerous diseases. Proteins can interact with membranes through lipid co-/post-translational modifications, and electrostatic and hydrophobic interactions, van der Waals forces and hydrogen bonding are all involved in the associations among membrane proteins and lipids. The present study reviews these interactions from the molecular and biomedical point of view, and the effects of their modulation on the physiological activity of cells, the aetiology of human diseases and the design of clinical drugs. In fact, the influence of lipids on protein function is reflected in the possibility to use these molecular species as targets for therapies against cancer, obesity, neurodegenerative disorders, cardiovascular pathologies and other diseases, using a new approach called membrane-lipid therapy.


Assuntos
Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Animais , Tratamento Farmacológico , Humanos , Modelos Biológicos , Estrutura Molecular
3.
J Pharmacol Exp Ther ; 302(1): 163-73, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12065713

RESUMO

Excitotoxicity has been implicated in the etiology of ischemic stroke, chronic neurodegenerative disorders, and very recently, in glioma growth. Thus, the development of novel neuroprotectant molecules that reduce excitotoxic brain damage is vigorously pursued. We have used an ionic current block-based cellular assay to screen a synthetic combinatorial library of trimers of N-alkylglycines on the N-methyl-D-aspartate (NMDA) receptor, a well known molecular target involved in excitotoxicity. We report the identification of a family of N-alkylglycines that selectively blocked the NMDA receptor. Notably, compound 3,3-diphenylpropyl-N-glycinamide (referred to as N20C) inhibited NMDA receptor channel activity with micromolar affinity, fast on-off blockade kinetics, and strong voltage dependence. Molecule N20C did not act as a competitive glutamate or glycine antagonist. In contrast, saturation of the blocker binding site with N20C prevented dizolcipine (MK-801) blockade of the NMDA receptor, implying that both drugs bind to the same receptor site. The N-alkylglycine efficiently prevented in vitro excitotoxic neurodegeneration of cerebellar and hippocampal neurons in culture. Attenuation of neuronal glutamate/NMDA-induced Ca(2+) overload and subsequent modulation of the glutamate-nitric oxide-cGMP pathway seems to underlie N20C neuroprotection. Noteworthy, this molecule exhibited significant in vivo neuroprotectant activity against an acute, severe, excitotoxic insult. Taken together, these findings indicate that N-alkylglycine N20C is a novel, low molecular weight, moderate-affinity NMDA receptor open channel blocker with in vitro and in vivo neuroprotective activity, which, in due turn, may become a tolerated drug for the treatment of neurodegenerative diseases and cancer.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Glicina/síntese química , Glicina/farmacologia , Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Amônia/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , AMP Cíclico/metabolismo , GMP Cíclico/antagonistas & inibidores , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/síntese química , Glicina/análogos & derivados , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/síntese química , Óxido Nítrico/antagonistas & inibidores , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Ratos , Proteínas Recombinantes/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA