Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transbound Emerg Dis ; 67(1): 431-441, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31539200

RESUMO

Animal tuberculosis remains a great source of socioeconomic and health concern worldwide. Its main causative agents, Mycobacterium bovis and Mycobacterium caprae, have been isolated from many different domestic and wild animals. Naturally, occurring tuberculosis is extremely rare in rabbits, and implication of M. caprae has never been reported earlier. This study describes a severe tuberculosis outbreak caused by M. caprae in a Spanish farm of rabbits raised for meat for human consumption. The disease was first identified in a cachectic dam, and then it was confirmed in ten does with similar clinical signs. Subsequently, a depopulation operation was ordered for public health, animal welfare and environmental reasons. To broaden knowledge of spontaneous tuberculosis in rabbits, a study focused on pathological, epidemiological and diagnostic aspects was carried out on 51 does and 16 kittens after receiving the necessary authorizations. These animals were subjected to a modified intradermal test. After being euthanized, rabbits were examined for the presence of visible tuberculosis-compatible lesions. Lung, kidney, caecal appendix and sacculus rotundus samples underwent microbiological and anatomopathological analysis. Infection was revealed by at least one of the methods used in 71% of dams and in 44% of kittens. The intradermal test was shown to be a good indicator of infection. Lung was the tissue for which more animals were positive but renal and intestinal tissues were also affected in many cases. Apparently, M. caprae spread mainly through the aerogenous route. Infection was pathologically characterized by the absence of evident fibrous capsules surrounding granulomas. A spoligotype (SB0415) frequently found in this area was considered responsible for the outbreak but the source could not be established. Regardless of the exceptional nature of animal tuberculosis in this host, rabbit industry might not escape from its effects and therefore, current biosafety and surveillance strategies should also consider this disease.


Assuntos
Surtos de Doenças/veterinária , Mycobacterium/isolamento & purificação , Coelhos/microbiologia , Tuberculose/veterinária , Animais , Fazendas , Feminino , Espanha/epidemiologia , Tuberculose/epidemiologia , Tuberculose/microbiologia , Tuberculose/patologia
2.
Arch Virol ; 165(1): 157-167, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31748876

RESUMO

Endogenous retroviruses of domestic cats (ERV-DCs) are members of the genus Gammaretrovirus that infect domestic cats (Felis silvestris catus). Uniquely, domestic cats harbor replication-competent proviruses such as ERV-DC10 (ERV-DC18) and ERV-DC14 (xenotropic and nonecotropic viruses, respectively). The purpose of this study was to assess invasion by two distinct infectious ERV-DCs, ERV-DC10 and ERV-DC14, in domestic cats. Of a total sample of 1646 cats, 568 animals (34.5%) were positive for ERV-DC10 (heterozygous: 377; homozygous: 191), 68 animals (4.1%) were positive for ERV-DC14 (heterozygous: 67; homozygous: 1), and 10 animals (0.6%) were positive for both ERV-DC10 and ERV-DC14. ERV-DC10 and ERV-DC14 were detected in domestic cats in Japan as well as in Tanzania, Sri Lanka, Vietnam, South Korea and Spain. Breeding cats, including Singapura, Norwegian Forest and Ragdoll cats, showed high frequencies of ERV-DC10 (60-100%). By contrast, ERV-DC14 was detected at low frequency in breeding cats. Our results suggest that ERV-DC10 is widely distributed while ERV-DC14 is maintained in a minor population of cats. Thus, ERV-DC10 and ERV-DC14 have invaded cat populations independently.


Assuntos
Gammaretrovirus/classificação , Técnicas de Genotipagem/métodos , Infecções por Retroviridae/epidemiologia , Animais , Animais Domésticos , Ásia , Cruzamento , Gatos , Gammaretrovirus/genética , Gammaretrovirus/isolamento & purificação , Noruega , Filogenia , Filogeografia , Infecções por Retroviridae/virologia , Espanha , Tanzânia
3.
Animals (Basel) ; 9(10)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658748

RESUMO

In this retrospective study, we describe the relative occurrence of clinical myxomatosis, and rabbit haemorrhagic disease (RHD), on 1714 commercial farms visited in Spain, between 1988 and 2018. We determined the annual prevalence based on 817 visits to 394 farms affected by myxomatosis. Myxomatosis was more prevalent from August to March, being lowest in June (3%) and highest in September (8.9%). With regard to RHD, we assessed 253 visits to 156 affected farms. We analyzed mean annual and monthly incidence. Two important RHD epidemics occurred; the first in 1988-1989 due to RHDV GI.1 (also known as RHDV), and the second from 2011 to 2013 due to RHDV GI.2 (RHDV2 or RHDVb). These epidemics occurred at times when effective vaccination had not been carried out. Relative monthly incidence in 2011-2018 was higher from April to August (p < 0.001). The results we obtained from 1404 necropsies on 102 farms did not clearly relate serosanguinous nasal discharge in rabbits with disease caused by GI.2 infection. We also assessed vaccination schedules used on 200 doe farms visited from the end of 2014 to 2018; 95.5% vaccinated against myxomatosis and 97.5% against RHD. Both diseases remain prevalent; however, effective vaccination has produced a steady decline in myxomatosis and RHDV GI.1 and GI.2 on-farm detection. The maintenance of high hygienic standards will be needed to continue and improve this control. However, further studies are required to investigate the causes of sustained virus presence and vaccine breaks.

4.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31534037

RESUMO

Endogenous retroviruses (ERVs) of domestic cats (ERV-DCs) are one of the youngest feline ERV groups in domestic cats (Felis silvestris catus); some members are replication competent (ERV-DC10, ERV-DC18, and ERV-DC14), produce the antiretroviral soluble factor Refrex-1 (ERV-DC7 and ERV-DC16), or can generate recombinant feline leukemia virus (FeLV). Here, we investigated ERV-DC in European wildcats (Felis silvestris silvestris) and detected four loci: ERV-DC6, ERV-DC7, ERV-DC14, and ERV-DC16. ERV-DC14 was detected at a high frequency in European wildcats; however, it was replication defective due to a single G → A nucleotide substitution, resulting in an E148K substitution in the ERV-DC14 envelope (Env). This mutation results in a cleavage-defective Env that is not incorporated into viral particles. Introduction of the same mutation into feline and murine infectious gammaretroviruses resulted in a similar Env dysfunction. Interestingly, the same mutation was found in an FeLV isolate from naturally occurring thymic lymphoma and a mouse ERV, suggesting a common mechanism of virus inactivation. Refrex-1 was present in European wildcats; however, ERV-DC16, but not ERV-DC7, was unfixed in European wildcats. Thus, Refrex-1 has had an antiviral role throughout the evolution of the genus Felis, predating cat exposure to feline retroviruses. ERV-DC sequence diversity was present across wild and domestic cats but was locus dependent. In conclusion, ERVs have evolved species-specific phenotypes through the interplay between ERVs and their hosts. The mechanism of viral inactivation may be similar irrespective of the evolutionary history of retroviruses. The tracking of ancestral retroviruses can shed light on their roles in pathogenesis and host-virus evolution.IMPORTANCE Domestic cats (Felis silvestris catus) were domesticated from wildcats approximately 9,000 years ago via close interaction between humans and cats. During cat evolution, various exogenous retroviruses infected different cat lineages and generated numerous ERVs in the host genome, some of which remain replication competent. Here, we detected several ERV-DC loci in Felis silvestris silvestris Notably, a species-specific single nucleotide polymorphism in the ERV-DC14 env gene, which results in a replication-defective product, is highly prevalent in European wildcats, unlike the replication-competent ERV-DC14 that is commonly present in domestic cats. The presence of the same lethal mutation in the env genes of both FeLV and murine ERV provides a common mechanism shared by endogenous and exogenous retroviruses by which ERVs can be inactivated after endogenization. The antiviral role of Refrex-1 predates cat exposure to feline retroviruses. The existence of two ERV-DC14 phenotypes provides a unique model for understanding both ERV fate and cat domestication.


Assuntos
Animais Selvagens/virologia , Gatos/virologia , Retrovirus Endógenos/genética , Infecções por Retroviridae/virologia , Animais , Doenças do Gato/imunologia , Doenças do Gato/virologia , Linhagem Celular , Evolução Molecular , Gammaretrovirus/genética , Genes env/genética , Células HEK293 , Humanos , Vírus da Leucemia Felina/genética , Proteínas de Membrana , Camundongos , Mutação , Filogenia , Alinhamento de Sequência , Análise de Sequência de Proteína , Especificidade da Espécie , Replicação Viral
5.
J Virol ; 80(7): 3523-31, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16537620

RESUMO

Polyomaviruses are small nonenveloped particles with a circular double-stranded genome, approximately 5 kbp in size. The mammalian polyomaviruses mainly cause persistent subclinical infections in their natural nonimmunocompromised hosts. In contrast, the polyomaviruses of birds--avian polyomavirus (APV) and goose hemorrhagic polyomavirus (GHPV)--are the primary agents of acute and chronic disease with high mortality rates in young birds. Screening of field samples of diseased birds by consensus PCR revealed the presence of two novel polyomaviruses in the liver of an Eurasian bullfinch (Pyrrhula pyrrhula griseiventris) and in the spleen of a Eurasian jackdaw (Corvus monedula), tentatively designated as finch polyomavirus (FPyV) and crow polyomavirus (CPyV), respectively. The genomes of the viruses were amplified by using multiply primed rolling-circle amplification and cloned. Analysis of the FPyV and CPyV genome sequences revealed a close relationship to APV and GHPV, indicating the existence of a distinct avian group among the polyomaviruses. The main characteristics of this group are (i) involvement in fatal disease, (ii) the existence of an additional open reading frame in the 5' region of the late mRNAs, and (iii) a different manner of DNA binding of the large tumor antigen compared to that of the mammalian polyomaviruses.


Assuntos
Aves/virologia , Genoma Viral , Técnicas de Amplificação de Ácido Nucleico , Infecções por Polyomavirus/veterinária , Polyomavirus/química , Polyomavirus/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Viral/análise , DNA Viral/genética , Fígado/virologia , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Reação em Cadeia da Polimerase , Polyomavirus/classificação , Polyomavirus/isolamento & purificação , Infecções por Polyomavirus/virologia , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Baço/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA