Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Cardiovasc Res ; 2: 2023530-549, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37745941

RESUMO

The Notch pathway is a major regulator of endothelial transcriptional specification. Targeting the Notch receptors or Delta-like ligand 4 (Dll4) dysregulates angiogenesis. Here, by analyzing single and compound genetic mutants for all Notch signaling members, we find significant differences in the way ligands and receptors regulate liver vascular homeostasis. Loss of Notch receptors caused endothelial hypermitogenic cell-cycle arrest and senescence. Conversely, Dll4 loss triggered a strong Myc-driven transcriptional switch inducing endothelial proliferation and the tip-cell state. Myc loss suppressed the induction of angiogenesis in the absence of Dll4, without preventing the vascular enlargement and organ pathology. Similarly, inhibition of other pro-angiogenic pathways, including MAPK/ERK and mTOR, had no effect on the vascular expansion induced by Dll4 loss; however, anti-VEGFA treatment prevented it without fully suppressing the transcriptional and metabolic programs. This study shows incongruence between single-cell transcriptional states, vascular phenotypes and related pathophysiology. Our findings also suggest that the vascular structure abnormalization, rather than neoplasms, causes the reported anti-Dll4 antibody toxicity.

2.
Angiogenesis ; 24(2): 237-250, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34050878

RESUMO

The Notch signalling pathway is one of the main regulators of endothelial biology. In the last 20 years the critical function of Notch has been uncovered in the context of angiogenesis, participating in tip-stalk specification, arterial-venous differentiation, vessel stabilization, and maturation processes. Importantly, pharmacological compounds targeting distinct members of the Notch signalling pathway have been used in the clinics for cancer therapy. However, the underlying mechanisms that support the variety of outcomes triggered by Notch in apparently opposite contexts such as angiogenesis and vascular homeostasis remain unknown. In recent years, advances in -omics technologies together with mosaic analysis and high molecular, cellular and temporal resolution studies have allowed a better understanding of the mechanisms driven by the Notch signalling pathway in different endothelial contexts. In this review we will focus on the main findings that revisit the role of Notch signalling in vascular biology. We will also discuss potential future directions and technologies that will shed light on the puzzling role of Notch during endothelial growth and homeostasis. Addressing these open questions may allow the improvement and development of therapeutic strategies based on modulation of the Notch signalling pathway.


Assuntos
Células Endoteliais/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Células Endoteliais/patologia , Humanos , Neovascularização Patológica/patologia , Neovascularização Patológica/terapia
3.
Nature ; 589(7842): 437-441, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33299176

RESUMO

The formation of arteries is thought to occur by the induction of a highly conserved arterial genetic programme in a subset of vessels that will later experience an increase in oxygenated blood flow1,2. The initial steps of arterial specification require both the VEGF and Notch signalling pathways3-5. Here, we combine inducible genetic mosaics and transcriptomics to modulate and define the function of these signalling pathways in cell proliferation, arteriovenous differentiation and mobilization. We show that endothelial cells with high levels of VEGF or Notch signalling are intrinsically biased to mobilize and form arteries; however, they are not genetically pre-determined, and can also form veins. Mechanistically, we found that increased levels of VEGF and Notch signalling in pre-arterial capillaries suppresses MYC-dependent metabolic and cell-cycle activities, and promotes the incorporation of endothelial cells into arteries. Mosaic lineage-tracing studies showed that endothelial cells that lack the Notch-RBPJ transcriptional activator complex rarely form arteries; however, these cells regained the ability to form arteries when the function of MYC was suppressed. Thus, the development of arteries does not require the direct induction of a Notch-dependent arterial differentiation programme, but instead depends on the timely suppression of endothelial cell-cycle progression and metabolism, a process that precedes arterial mobilization and complete differentiation.


Assuntos
Artérias/citologia , Artérias/crescimento & desenvolvimento , Proliferação de Células , Células Endoteliais/citologia , Endotélio Vascular/citologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular/genética , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Masculino , Camundongos , Mosaicismo , Mutação , Fenótipo , Proteínas Proto-Oncogênicas c-myc/deficiência , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Notch/deficiência , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Veias/citologia
4.
Cell Mol Life Sci ; 78(4): 1329-1354, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33078209

RESUMO

Therapeutic modulation of vascular cell proliferation and migration is essential for the effective inhibition of angiogenesis in cancer or its induction in cardiovascular disease. The general view is that an increase in vascular growth factor levels or mitogenic stimulation is beneficial for angiogenesis, since it leads to an increase in both endothelial proliferation and sprouting. However, several recent studies showed that an increase in mitogenic stimuli can also lead to the arrest of angiogenesis. This is due to the existence of intrinsic signaling feedback loops and cell cycle checkpoints that work in synchrony to maintain a balance between endothelial proliferation and sprouting. This balance is tightly and effectively regulated during tissue growth and is often deregulated or impaired in disease. Most therapeutic strategies used so far to promote vascular growth simply increase mitogenic stimuli, without taking into account its deleterious effects on this balance and on vascular cells. Here, we review the main findings on the mechanisms controlling physiological vascular sprouting, proliferation, and senescence and how those mechanisms are often deregulated in acquired or congenital cardiovascular disease leading to a diverse range of pathologies. We also discuss alternative approaches to increase the effectiveness of pro-angiogenic therapies in cardiovascular regenerative medicine.


Assuntos
Envelhecimento/genética , Doenças Cardiovasculares/genética , Neovascularização Patológica/genética , Neovascularização Fisiológica/genética , Doenças Cardiovasculares/patologia , Movimento Celular/genética , Proliferação de Células/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Retroalimentação Fisiológica , Humanos , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais
5.
Nat Commun ; 10(1): 2016, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043605

RESUMO

Appropriate therapeutic modulation of endothelial proliferation and sprouting is essential for the effective inhibition of angiogenesis in cancer or its induction in cardiovascular disease. The current view is that an increase in growth factor concentration, and the resulting mitogenic activity, increases both endothelial proliferation and sprouting. Here, we modulate mitogenic stimuli in different vascular contexts by interfering with the function of the VEGF and Notch signalling pathways at high spatiotemporal resolution in vivo. Contrary to the prevailing view, our results indicate that high mitogenic stimulation induced by VEGF, or Notch inhibition, arrests the proliferation of angiogenic vessels. This is due to the existence of a bell-shaped dose-response to VEGF and MAPK activity that is counteracted by Notch and p21, determining whether endothelial cells sprout, proliferate, or become quiescent. The identified mechanism should be considered to achieve optimal therapeutic modulation of angiogenesis.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Mitógenos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Endotélio Vascular/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Knockout , Neovascularização Patológica/patologia , Receptores Notch/antagonistas & inibidores , Receptores Notch/metabolismo , Retina , Vasos Retinianos , Transdução de Sinais/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA