Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 394(2): 261-277, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32936353

RESUMO

Melatonin improved the outcome of septic cardiomyopathy by inhibiting NLRP3 priming induced by reactive oxygen species. To get insights into these events, we studied the melatonin/Nrf2 antioxidant pathways during sepsis in the heart of NLRP3-deficient mice. Sepsis was induced by cecal ligation and puncture and melatonin was given at a dose of 30 mg/kg. Nuclear turnover of Nrf2 and p-Ser40 Nrf2 and expression of ho-1 were enhanced in nlrp3+/+ and nlrp3-/- mice during sepsis. Sepsis caused higher mitochondria impairment, apoptotic and autophagic events in nlrp3+/+ mice than in nlrp3-/- animals. These findings were accompanied by greater levels of Parkin and PINK-1, and lower Mfn2/Drp-1 ratio in nlrp3+/+ than in nlrp3-/- mice during sepsis, supporting less mitophagy in the latter. Ultrastructural analysis of myocardial tissue further confirmed these observations. The activation of NLRP3 inflammasome accounted for most of the deleterious effects of sepsis, whereas the Nrf2-dependent antioxidative response activation in response to sepsis was unable to neutralize these events. In turn, melatonin further enhanced the Nrf2 response in both mice strains and reduced the NLRP3 inflammasome activation in nlrp3+/+ mice, restoring myocardial homeostasis. The data support that the anti-inflammatory efficacy of melatonin against sepsis depends, at least in part, on Nrf2 activation.


Assuntos
Cardiotônicos/uso terapêutico , Traumatismos Cardíacos/tratamento farmacológico , Inflamassomos/antagonistas & inibidores , Melatonina/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Sepse/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Respiração Celular/efeitos dos fármacos , Feminino , Traumatismos Cardíacos/etiologia , Traumatismos Cardíacos/genética , Traumatismos Cardíacos/metabolismo , Inflamassomos/genética , Melatonina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Fator 2 Relacionado a NF-E2/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Oxirredutases/metabolismo , Sepse/complicações , Sepse/genética , Sepse/metabolismo , Proteína Supressora de Tumor p53/genética
2.
J Gerontol A Biol Sci Med Sci ; 74(11): 1699-1708, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30869745

RESUMO

To investigate the role of NLRP3 inflammasome in muscular aging, we evaluated here the morphological and functional markers of sarcopenia in the NLRP3-knockout mice, as well as the beneficial effect of melatonin supplementation. The gastrocnemius muscles of young (3 months), early-aged (12 months), and old-aged (24 months) NLRP3-knockout female mice were examined. Moreover, locomotor activity and apoptosis were assessed. The results revealed early markers of sarcopenia at the age of 12 months, including reduction of lactate, ratio of muscle weight to body weight, muscle fibers number, and mitochondrial number. Increased interstitial tissues, apoptosis, and muscle fibers area, as well as mitochondrial damage were detected, with little muscular activity effects. In the old-aged, these alterations progressed with a reduction in locomotor activity, mitochondrial cristae destruction, nuclear fragmentation, tubular aggregates (TAs) formation, and increased frailty index. Oral melatonin supplementation preserved the normal muscular structure, muscle fibers number, and muscular activity in old age. Melatonin enhanced lactate production, recovered mitochondria, inhibited TAs formation, reduced apoptosis, and normalized frailty index. The fewer sarcopenic changes as well as the highly detectable prophylactic effects of melatonin treatment reported here in the muscle of NLRP3-knockout mice comparing with that previously detected in wild-type mice, confirming NLRP3 inflammasome implication in muscular aging and sarcopenia onset and progression.


Assuntos
Envelhecimento/genética , Inflamassomos/genética , Melatonina/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Sarcopenia/genética , Envelhecimento/fisiologia , Animais , Biópsia por Agulha , Feminino , Regulação da Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Força Muscular/genética , Força Muscular/fisiologia , Sarcopenia/patologia , Sensibilidade e Especificidade
3.
Molecules ; 22(10)2017 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-29036910

RESUMO

Charcot-Marie-Tooth neuropathy (CMT) is a motor and sensory neuropathy comprising a heterogeneous group of inherited diseases. The CMT1A phenotype is predominant in the 70% of CMT patients, with nerve conduction velocity reduction and hypertrophic demyelination. These patients have elevated oxidative stress and chronic inflammation. Currently, there is no effective cure for CMT; herein, we investigated whether melatonin treatment may reduce the inflammatory and oxidative damage in CMT1A patients. Three patients, aged 8-10 years, were treated with melatonin (60 mg at 21:00 h plus 10 mg at 09:00 h), and plasma levels of lipid peroxidation (LPO), nitrites (NOx), IL-1ß, IL-2, IL-6, TNF-α, INF-γ, oxidized to reduced glutathione (GSSG/GSH) ratio, and the activities of superoxide dismutase (SOD), glutathione-S transferase (GST), glutathione peroxidase (GPx), and reductase (GRd), were determined in erythrocytes at 3 and 6 months of treatment. Healthy age- and sex-matched subjects were used as controls. The results showed increased activities of SOD, GST, GPx, and GRd in CMT1A patients, which were reduced at 3 and 6 months of treatment. The GSSG/GSH ratio significantly increased in the patients, returning to control values after melatonin treatment. The inflammatory process was confirmed by the elevation of all proinflammatory cytokines measured, which were also normalized by melatonin. LPO and NOx, which also were elevated in the patients, were normalized by melatonin. The results document beneficial effects of the use of melatonin in CMT1A patients to reduce the hyperoxidative and inflammatory condition, which may correlate with a reduction of the degenerative process.


Assuntos
Doença de Charcot-Marie-Tooth/tratamento farmacológico , Doença de Charcot-Marie-Tooth/metabolismo , Citocinas/metabolismo , Melatonina/uso terapêutico , Criança , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Interferon gama/metabolismo , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Appl Physiol Nutr Metab ; 42(7): 700-707, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28192673

RESUMO

Previous data showed that the administration of high doses of melatonin improved the circadian system in athletes. Here, we investigated in the same experimental paradigm whether the antioxidant properties of melatonin has also beneficial effects against exercise-induced oxidative stress and muscle damage in athletes. Twenty-four athletes were treated with 100 mg·day-1 of melatonin or placebo 30 min before bedtime during 4 weeks in a randomized double-blind scheme. Exercise intensity was higher during the study that before starting it. Blood samples were collected before and after treatment, and plasma was used for oxygen radical absorption capacity (ORAC), lipid peroxidation (LPO), nitrite plus nitrate (NOx), and advanced oxidation protein products (AOPP) determinations. Glutathione (GSH), glutathione disulphide (GSSG) levels, and glutathione peroxidase (GPx) and reductase (GRd) activities, were measured in erythrocytes. Melatonin intake increased ORAC, reduced LPO and NOx levels, and prevented the increase of AOPP, compared to placebo group. Melatonin was also more efficient than placebo in reducing GSSG·GSH-1 and GPx·GRd-1 ratios. Melatonin, but not placebo, reduced creatine kinase, lactate dehydrogenase, creatinine, and total cholesterol levels. Overall, the data reflect a beneficial effect of melatonin treatment in resistance-training athletes, preventing extra- and intracellular oxidative stress induced by exercise, and yielding further skeletal muscle protection against exercise-induced oxidative damage.


Assuntos
Antioxidantes/administração & dosagem , Suplementos Nutricionais , Melatonina/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Treinamento Resistido , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Atletas , Glicemia/metabolismo , Colesterol/sangue , Creatina Quinase/sangue , Dieta , Método Duplo-Cego , Eritrócitos/efeitos dos fármacos , Eritrócitos/fisiologia , Glutationa/sangue , Dissulfeto de Glutationa/sangue , Glutationa Peroxidase/sangue , Humanos , L-Lactato Desidrogenase/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Músculo Esquelético/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Triglicerídeos/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA