Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38068802

RESUMO

Adequate nutrient supply is crucial for the proper development of the embryo. Although nutrient supply is determined by maternal diet, the gut microbiota also influences nutrient availability. While currently there is no cure for neural tube defects (NTDs), their prevention is largely amenable to maternal folic acid and inositol supplementation. The gut microbiota also contributes to the production of these nutrients, which are absorbed by the host, but its role in this context remains largely unexplored. In this study, we performed a functional and morphological analysis of the intestinal tract of loop-tail mice (Vangl2 mutants), a mouse model of folate/inositol-resistant NTDs. In addition, we investigated the changes in gut microbiota using 16S rRNA gene sequencing regarding (1) the host genotype; (2) the sample source for metagenomics analysis; (3) the pregnancy status in the gestational window of neural tube closure; (4) folic acid and (5) D-chiro-inositol supplementation. We observed that Vangl2+/Lp mice showed no apparent changes in gastrointestinal transit time or fecal output, yet exhibited increased intestinal length and cecal weight and gut dysbiosis. Moreover, our results showed that the mice supplemented with folic acid and D-chiro-inositol had significant changes in their microbiota composition, which are changes that could have implications for nutrient absorption.


Assuntos
Microbiota , Defeitos do Tubo Neural , Feminino , Gravidez , Camundongos , Animais , RNA Ribossômico 16S/genética , Defeitos do Tubo Neural/prevenção & controle , Ácido Fólico/farmacologia , Suplementos Nutricionais , Inositol , Modelos Animais de Doenças
2.
Dis Model Mech ; 16(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589570

RESUMO

Neural tube defects (NTDs) are the second most common cause of congenital malformations and are often studied in animal models. Loop-tail (Lp) mice carry a mutation in the Vangl2 gene, a member of the Wnt-planar cell polarity pathway. In Vangl2+/Lp embryos, the mutation induces a failure in the completion of caudal neural tube closure, but only a small percentage of embryos develop open spina bifida. Here, we show that the majority of Vangl2+/Lp embryos developed caudal closed NTDs and presented cellular aggregates that may facilitate the sealing of these defects. The cellular aggregates expressed neural crest cell markers and, using these as a readout, we describe a systematic method to assess the severity of the neural tube dorsal fusion failure. We observed that this defect worsened in combination with other NTD mutants, Daam1 and Grhl3. Besides, we found that in Vangl2+/Lp embryos, these NTDs were resistant to maternal folic acid and inositol supplementation. Loop-tail mice provide a useful model for research on the molecular interactions involved in the development of open and closed NTDs and for the design of prevention strategies for these diseases.


Assuntos
Defeitos do Tubo Neural , Cauda , Animais , Camundongos , Modelos Animais de Doenças , Ácido Fólico/farmacologia , Mutação/genética , Defeitos do Tubo Neural/genética , Proteínas de Ligação a DNA , Fatores de Transcrição , Proteínas dos Microfilamentos , Proteínas rho de Ligação ao GTP
3.
Dev Dyn ; 250(7): 955-973, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33501723

RESUMO

BACKGROUND: Neural tube (NT) closure is a complex developmental process that takes place in the early stages of embryogenesis and that is a key step in neurulation. In mammals, the process by which the neural plate generates the NT requires organized cell movements and tissue folding, and it terminates with the fusion of the apposed ends of the neural folds. RESULTS: Here we describe how almost identical cellular and molecular machinery is used to fuse the spinal neural folds as that involved in the repair of epithelial injury in the same area of the embryo. For both natural and wound activated closure of caudal neural tissue, hyaluronic acid and platelet-derived growth factor signaling appear to be crucial for the final fusion step. CONCLUSIONS: There seems to be no general wound healing machinery for all tissues but rather, a tissue-specific epithelial fusion machinery that embryos activate when necessary after abnormal epithelial opening.


Assuntos
Células Epiteliais/fisiologia , Tubo Neural/embriologia , Neurulação/fisiologia , Cicatrização/fisiologia , Animais , Fusão Celular , Células Cultivadas , Embrião de Mamíferos , Desenvolvimento Embrionário/fisiologia , Células Epiteliais/citologia , Feminino , Feto/embriologia , Ácido Hialurônico/metabolismo , Masculino , Camundongos , Crista Neural/embriologia , Crista Neural/fisiologia , Placa Neural/embriologia , Placa Neural/fisiologia , Defeitos do Tubo Neural/embriologia , Fator de Crescimento Derivado de Plaquetas/fisiologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA