Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Front Immunol ; 13: 918565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812460

RESUMO

MSCs products as well as their derived extracellular vesicles, are currently being explored as advanced biologics in cell-based therapies with high expectations for their clinical use in the next few years. In recent years, various strategies designed for improving the therapeutic potential of mesenchymal stromal cells (MSCs), including pre-conditioning for enhanced cytokine production, improved cell homing and strengthening of immunomodulatory properties, have been developed but the manufacture and handling of these cells for their use as advanced therapy medicinal products (ATMPs) remains insufficiently studied, and available data are mainly related to non-industrial processes. In the present article, we will review this topic, analyzing current information on the specific regulations, the selection of living donors as well as MSCs from different sources (bone marrow, adipose tissue, umbilical cord, etc.), in-process quality controls for ensuring cell efficiency and safety during all stages of the manual and automatic (bioreactors) manufacturing process, including cryopreservation, the use of cell banks, handling medicines, transport systems of ATMPs, among other related aspects, according to European and US legislation. Our aim is to provide a guide for a better, homogeneous manufacturing of therapeutic cellular products with special reference to MSCs.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Terapia Baseada em Transplante de Células e Tecidos , Resultado do Tratamento , Cordão Umbilical
2.
Front Immunol ; 13: 893576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651624

RESUMO

Due to their suppressive capacity, the adoptive transfer of regulatory T cells (Treg) has acquired a growing interest in controlling exacerbated inflammatory responses. Limited Treg recovery and reduced quality remain the main obstacles in most current protocols where differentiated Treg are obtained from adult peripheral blood. An alternate Treg source is umbilical cord blood, a promising source of Treg cells due to the higher frequency of naïve Treg and lower frequency of memory T cells present in the fetus' blood. However, the Treg number isolated from cord blood remains limiting. Human thymuses routinely discarded during pediatric cardiac surgeries to access the retrosternal operative field has been recently proposed as a novel source of Treg for cellular therapy. This strategy overcomes the main limitations of current Treg sources, allowing the obtention of very high numbers of undifferentiated Treg. We have developed a novel good manufacturing practice (GMP) protocol to obtain large Treg amounts, with very high purity and suppressive capacity, from the pediatric thymus (named hereafter thyTreg). The total amount of thyTreg obtained at the end of the procedure, after a short-term culture of 7 days, reach an average of 1,757 x106 (range 50 x 106 - 13,649 x 106) cells from a single thymus. The thyTreg product obtained with our protocol shows very high viability (mean 93.25%; range 83.35% - 97.97%), very high purity (mean 92.89%; range 70.10% - 98.41% of CD25+FOXP3+ cells), stability under proinflammatory conditions and a very high suppressive capacity (inhibiting in more than 75% the proliferation of activated CD4+ and CD8+ T cells in vitro at a thyTreg:responder cells ratio of 1:1). Our thyTreg product has been approved by the Spanish Drug Agency (AEMPS) to be administered as cell therapy. We are recruiting patients in the first-in-human phase I/II clinical trial worldwide that evaluates the safety, feasibility, and efficacy of autologous thyTreg administration in children undergoing heart transplantation (NCT04924491). The high quality and amount of thyTreg and the differential features of the final product obtained with our protocol allow preparing hundreds of doses from a single thymus with improved therapeutic properties, which can be cryopreserved and could open the possibility of an "off-the-shelf" allogeneic use in another individual.


Assuntos
Fatores de Transcrição Forkhead , Linfócitos T Reguladores , Transferência Adotiva , Adulto , Linfócitos T CD8-Positivos , Terapia Baseada em Transplante de Células e Tecidos , Criança , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Humanos
3.
Transfusion ; 62(2): 374-385, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35023148

RESUMO

BACKGROUND: Allogeneic stem cell transplantation is the treatment of choice for acute myeloid leukemia (AML) patients. Unmanipulated haploidentical transplantation (Haplo-HSCT) is commonly used for those AML patients who need a timely transplant and do not have a suitable matched donor, but relapse rates are still high, and improvements are needed. Adoptive immunotherapy using natural killer cells (NK cells) could be a promising tool to improved Haplo-HSCT but, to date, no optimal infusion and manufacturing protocols have been developed. STUDY DESIGN AND METHODS: In this study, we describe a quick and reproducible protocol for clinical-grade production of haploidentical donor NK cells using double immunomagnetic depletion and enrichment protocol and overnight IL-15 stimulation. RESULTS: Thus, we have obtained 8 viable and functional NK cell products that have been safely infused to five AML patients undergoing unmanipulated Haplo-HSCT. DISCUSSION: Our results demonstrate the safety and feasibility of manufactured NK IL15 cells obtained from an adult allogeneic donor in the setting of haploidentical transplantation for AML patients.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Adulto , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Interleucina-15 , Células Matadoras Naturais , Leucemia Mieloide Aguda/tratamento farmacológico
4.
Trials ; 22(1): 595, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488845

RESUMO

BACKGROUND: Chronic lower limb ischemia develops earlier and more frequently in patients with type 2 diabetes mellitus. Diabetes remains the main cause of lower-extremity non-traumatic amputations. Current medical treatment, based on antiplatelet therapy and statins, has demonstrated deficient improvement of the disease. In recent years, research has shown that it is possible to improve tissue perfusion through therapeutic angiogenesis. Both in animal models and humans, it has been shown that cell therapy can induce therapeutic angiogenesis, making mesenchymal stromal cell-based therapy one of the most promising therapeutic alternatives. The aim of this study is to evaluate the feasibility, safety, and efficacy of cell therapy based on mesenchymal stromal cells derived from adipose tissue intramuscular administration to patients with type 2 diabetes mellitus with critical limb ischemia and without possibility of revascularization. METHODS: A multicenter, randomized double-blind, placebo-controlled trial has been designed. Ninety eligible patients will be randomly assigned at a ratio 1:1:1 to one of the following: control group (n = 30), low-cell dose treatment group (n = 30), and high-cell dose treatment group (n = 30). Treatment will be administered in a single-dose way and patients will be followed for 12 months. Primary outcome (safety) will be evaluated by measuring the rate of adverse events within the study period. Secondary outcomes (efficacy) will be measured by assessing clinical, analytical, and imaging-test parameters. Tertiary outcome (quality of life) will be evaluated with SF-12 and VascuQol-6 scales. DISCUSSION: Chronic lower limb ischemia has limited therapeutic options and constitutes a public health problem in both developed and underdeveloped countries. Given that the current treatment is not established in daily clinical practice, it is essential to provide evidence-based data that allow taking a step forward in its clinical development. Also, the multidisciplinary coordination exercise needed to develop this clinical trial protocol will undoubtfully be useful to conduct academic clinical trials in the field of cell therapy in the near future. TRIAL REGISTRATION: ClinicalTrials.gov NCT04466007 . Registered on January 07, 2020. All items from the World Health Organization Trial Registration Data Set are included within the body of the protocol.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Noma , Tecido Adiposo , Animais , Ensaios Clínicos Fase II como Assunto , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/terapia , Método Duplo-Cego , Humanos , Isquemia/diagnóstico , Isquemia/terapia , Estudos Multicêntricos como Assunto , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2 , Resultado do Tratamento
5.
Cancers (Basel) ; 13(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34439098

RESUMO

TAMs constitute a large fraction of infiltrating immune cells in melanoma tissues, but their significance for clinical outcomes remains unclear. We explored diverse TAM parameters in clinically relevant primary cutaneous melanoma samples, including density, location, size, and polarization marker expression; in addition, because cytokine production is a hallmark of macrophages function, we measured CCL20, TNF, and VEGFA intracellular cytokines by single-cell multiparametric confocal microscopy. The Kaplan-Meier method was used to analyze correlation with melanoma-specific disease-free survival and overall survival. No significant correlations with clinical parameters were observed for TAM density, morphology, or location. Significantly, higher contents of the intracellular cytokines CCL20, TNF, and VEGFA were quantified in TAMs infiltrating metastasizing compared to non-metastasizing skin primary melanomas (p < 0.001). To mechanistically explore cytokine up-regulation, we performed in vitro studies with melanoma-conditioned macrophages, using RNA-seq to explore involved pathways and specific inhibitors. We show that p53 and NF-κB coregulate CCL20, TNF, and VEGFA in melanoma-conditioned macrophages. These results delineate a clinically relevant pro-oncogenic cytokine profile of TAMs with prognostic significance in primary melanomas and point to the combined therapeutic targeting of NF-kB/p53 pathways to control the deviation of TAMs in melanoma.

6.
Stem Cells Transl Med ; 9(12): 1500-1508, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32864818

RESUMO

We evaluated the safety and feasibility of adipose-derived mesenchymal stem cells to treat endoscopically urinary incontinence after radical prostatectomy in men or female stress urinary. We designed two prospective, nonrandomized phase I-IIa clinical trials of urinary incontinence involving 9 men (8 treated) and 10 women to test the feasibility and safety of autologous mesenchymal stem cells for this use. Cells were obtained from liposuction containing 150 to 200 g of fat performed on every patient. After 4 to 6 weeks and under sedation, endoscopic intraurethral injection of the cells was performed. On each visit (baseline, 1, 3, 6, and 12 months), clinical parameters were measured, and blood samples, urine culture, and uroflowmetry were performed. Every patient underwent an urethrocystoscopy and urodynamic studies on the first and last visit. Data from pad test, quality-of-life and incontinence questionnaires, and pads used per day were collected at every visit. Statistical analysis was done by Wilcoxon signed-rank test. No adverse effects were observed. Three men (37.5%) and five women (50%) showed an objective improvement of >50% (P < .05) and a subjective improvement of 70% to 80% from baseline. In conclusion, intraurethral application of stem cells derived from adipose tissue is a safe and feasible procedure to treat urinary incontinence after radical prostatectomy or in female stress urinary incontinence. A statistically significant difference was obtained for pad-test improvement in 3/8 men and 5/10 women. Our results encourage studies to confirm safety and to analyze efficacy.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Incontinência Urinária/terapia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
J Clin Periodontol ; 47(11): 1391-1402, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32946590

RESUMO

AIM: To evaluate the safety and efficacy of autologous periodontal ligament-derived mesenchymal stem cells (PDL-MSCs) embedded in a xenogeneic bone substitute (XBS) for the regenerative treatment of intra-bony periodontal defects. MATERIAL AND METHODS: This quasi-randomized controlled pilot phase II clinical trial included patients requiring a tooth extraction and presence of one intra-bony lesion (1-2 walls). Patients were allocated to either the experimental (XBS + 10 × 106 PDL-MSCs/100 mg) or the control group (XBS). Clinical and radiographical parameters were recorded at baseline, 6, 9 and 12 months. The presence of adverse events was also evaluated. Chi-square, Student's t test, Mann-Whitney U, repeated-measures ANOVA and regression models were used. RESULTS: Twenty patients were included. No serious adverse events were reported. Patients in the experimental group (n = 9) showed greater clinical attachment level (CAL) gain (1.44, standard deviation [SD] = 1.87) and probing pocket depth (PPD) reduction (2.33, SD = 1.32) than the control group (n = 10; CAL gain = 0.88, SD = 1.68, and PPD reduction = 2.10, SD = 2.46), without statistically significant differences. CONCLUSION: The application of PDL-MSCs to XBS for the treatment of one- to two-wall intra-bony lesions was safe and resulted in low postoperative morbidity and appropriate healing, although its additional benefit, when compared with the XBS alone, was not demonstrated.


Assuntos
Perda do Osso Alveolar , Substitutos Ósseos , Células-Tronco Mesenquimais , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/cirurgia , Regeneração Óssea , Substitutos Ósseos/uso terapêutico , Regeneração Tecidual Guiada Periodontal , Humanos , Perda da Inserção Periodontal/cirurgia , Ligamento Periodontal
8.
Circ Res ; 123(5): 579-589, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29921651

RESUMO

RATIONALE: Allogeneic cardiac stem cells (AlloCSC-01) have shown protective, immunoregulatory, and regenerative properties with a robust safety profile in large animal models of heart disease. OBJECTIVE: To investigate the safety and feasibility of early administration of AlloCSC-01 in patients with ST-segment-elevation myocardial infarction. METHODS AND RESULTS: CAREMI (Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With STEMI and Left Ventricular Dysfunction) was a phase I/II multicenter, randomized, double-blind, placebo-controlled trial in patients with ST-segment-elevation myocardial infarction, left ventricular ejection fraction ≤45%, and infarct size ≥25% of left ventricular mass by cardiac magnetic resonance, who were randomized (2:1) to receive AlloCSC-01 or placebo through the intracoronary route at days 5 to 7. The primary end point was safety and included all-cause death and major adverse cardiac events at 30 days (all-cause death, reinfarction, hospitalization because of heart failure, sustained ventricular tachycardia, ventricular fibrillation, and stroke). Secondary safety end points included major adverse cardiac events at 6 and 12 months, adverse events, and immunologic surveillance. Secondary exploratory efficacy end points were changes in infarct size (percentage of left ventricular mass) and indices of ventricular remodeling by magnetic resonance at 12 months. Forty-nine patients were included (92% male, 55±11 years), 33 randomized to AlloCSC-01 and 16 to placebo. No deaths or major adverse cardiac events were reported at 12 months. One severe adverse events in each group was considered possibly related to study treatment (allergic dermatitis and rash). AlloCSC-01 elicited low levels of donor-specific antibodies in 2 patients. No immune-related adverse events were found, and no differences between groups were observed in magnetic resonance-based efficacy parameters at 12 months. The estimated treatment effect of AlloCSC-01 on the absolute change from baseline in infarct size was -2.3% (95% confidence interval, -6.5% to 1.9%). CONCLUSIONS: AlloCSC-01 can be safely administered in ST-segment-elevation myocardial infarction patients with left ventricular dysfunction early after revascularization. Low immunogenicity and absence of immune-mediated events will facilitate adequately powered studies to demonstrate their clinical efficacy in this setting. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov . Unique identifier: NCT02439398.


Assuntos
Mioblastos Cardíacos/transplante , Infarto do Miocárdio/terapia , Transplante de Células-Tronco/métodos , Disfunção Ventricular Esquerda/terapia , Idoso , Feminino , Humanos , Infusões Intra-Arteriais , Masculino , Pessoa de Meia-Idade , Mioblastos Cardíacos/citologia , Infarto do Miocárdio/complicações , Transplante de Células-Tronco/efeitos adversos , Transplante Homólogo , Disfunção Ventricular Esquerda/complicações
10.
Circ Res ; 121(1): 71-80, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28533209

RESUMO

RATIONALE: Stem cell therapy has increased the therapeutic armamentarium in the fight against ischemic heart disease and heart failure. The administration of exogenous stem cells has been investigated in patients suffering an acute myocardial infarction, with the final aim of salvaging jeopardized myocardium and preventing left ventricular adverse remodeling and functional deterioration. However, phase I and II clinical trials with autologous and first-generation stem cells have yielded inconsistent benefits and mixed results. OBJECTIVE: In the search for new and more efficient cellular regenerative products, interesting cardioprotective, immunoregulatory, and cardioregenerative properties have been demonstrated for human cardiac stem cells. On the other hand, allogeneic cells show several advantages over autologous sources: they can be produced in large quantities, easily administered off-the-shelf early after an acute myocardial infarction, comply with stringent criteria for product homogeneity, potency, and quality control, and may exhibit a distinctive immunologic behavior. METHODS AND RESULTS: With a promising preclinical background, CAREMI (Cardiac Stem Cells in Patients With Acute Myocardial Infarction) has been designed as a double-blind, 2:1 randomized, controlled, and multicenter clinical trial that will evaluate the safety, feasibility, and efficacy of intracoronary delivery of allogeneic human cardiac stem cell in 55 patients with large acute myocardial infarction, left ventricular dysfunction, and at high risk of developing heart failure. CONCLUSIONS: This phase I/II clinical trial represents a novel experience in humans with allogeneic cardiac stem cell in a rigorously imaging-based selected group of acute myocardial infarction patients, with detailed safety immunologic assessments and magnetic resonance imaging-based efficacy end points. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02439398.


Assuntos
Vasos Coronários , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Transplante de Células-Tronco/métodos , Disfunção Ventricular Esquerda/terapia , Vasos Coronários/fisiologia , Método Duplo-Cego , Estudos de Viabilidade , Seguimentos , Humanos , Infusões Intra-Arteriais/métodos , Infarto do Miocárdio/diagnóstico , Transplante Homólogo/métodos , Resultado do Tratamento , Disfunção Ventricular Esquerda/diagnóstico
12.
J Am Coll Cardiol ; 65(22): 2372-82, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26046730

RESUMO

BACKGROUND: Stem cell-based therapy has emerged as a potential therapy in acute myocardial infarction (AMI). Although various approaches have been studied, intracoronary injection of bone marrow autologous mononuclear cells (BMMC) and the ability of granulocyte colony-stimulating factor (G-CSF) to mobilize endogenous cells have attracted the most attention. OBJECTIVES: This study compares, for the first time, the efficacy of BMMC injection, G-CSF mobilization, and the combination of both with standard treatment. METHODS: On Day 1 after primary percutaneous coronary intervention, 120 patients were randomized to a 1) intracoronary BMMC injection; 2) mobilization with G-CSF; 3) both (BMMC injection plus G-CSF); or 4) conventional treatment (control group). G-CSF, 10 µg/kg/day subcutaneously, was started Day 1 and maintained for 5 days. BMMC injection was performed on Days 3 to 5. Our primary endpoint was absolute change in 12-month left ventricular ejection fraction (LVEF) and left ventricular end-systolic volume (LVESV) relative to baseline measured by cardiac magnetic resonance. RESULTS: The mean change in LVEF between baseline and follow-up for all patients was 4 ± 6% (p = 0.006). Change in LVEF and LVESV over time did not differ significantly among the 4 groups. Patients actively treated with any stem cell approach showed similar changes in LVEF and LVESV versus control subjects, with a small but significant reduction in infarct area (p = 0.038). CONCLUSIONS: In our study, 3 different bone marrow-derived stem cell approaches in AMI did not result in improvement of LVEF or volumes compared with standard AMI care (Trial of Hematopoietic Stem Cells in Acute Myocardial Infarction [TECAM]; NCT00984178).


Assuntos
Células da Medula Óssea/citologia , Eletrocardiografia , Infarto do Miocárdio/terapia , Transplante de Células-Tronco/métodos , Angiografia Coronária , Feminino , Seguimentos , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Humanos , Injeções Subcutâneas , Imagem Cinética por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/fisiopatologia , Estudos Prospectivos , Recuperação de Função Fisiológica , Reperfusão , Volume Sistólico , Transplante Autólogo
13.
Biochem Pharmacol ; 93(4): 428-39, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25557296

RESUMO

Therapeutic approaches to protect the heart from ischemia/reperfusion (I/R) injury are an area of intense research, as myocardial infarction is a major cause of mortality and morbidity. Diterpenes are bioactive natural products with great therapeutic potential. In the present study, we have investigated the in vivo cardioprotective effects of a labdane diterpene (DT1) against cardiac I/R injury and the molecular mechanisms involved. DT1 attenuates post-ischemic injury via an AKT-dependent activation of HIF-1α, survival pathways and inhibition of NF-κB signaling. Myocardial infarction (MI) was induced in Wistar rats occluding the left coronary artery (LCA) for 30min followed by 72h reperfusion. DT1 (5mg/kg) was intravenously administered at reperfusion. In addition, we investigated the mechanisms of cardioprotection in the Langendorff-perfused model. Cardioprotection was observed when DT1 was administered after myocardial injury. The molecular mechanisms involved the activation of the survival pathway PDK-1, AKT and AMPK, a reduced phosphorylation of PKD1/2 and sustained HIF-1α activity, leading to increased expression of anti-apoptotic proteins and decreased caspase-3 activation. Pharmacological inhibition of AKT following MI and prior to DT1 challenge significantly decreased the cardioprotection afforded by DT1 therapy at reperfusion. Cardiac function after MI was significantly improved after DT1-treatment, as evidenced by hemodynamic recovery and decreased myocardial infarct size. These findings demonstrate an efficient in vivo cardioprotection by diterpene DT1 against I/R when administered at reperfusion, opening new therapeutic strategies as adjunctive therapy for the pharmacological management of I/R injury.


Assuntos
Cardiotônicos/uso terapêutico , Diterpenos/uso terapêutico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Cardiotônicos/farmacologia , Células Cultivadas , Diterpenos/farmacologia , Masculino , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar
14.
Injury ; 45 Suppl 4: S42-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25384474

RESUMO

INTRODUCTION: The most common method to obtain human mesenchymal stem cells (MSCs) is bone marrow aspiration from the iliac crest, but MSCs have also been isolated from different bones. The main purpose of this study was to compare bone marrow MSCs aspirated from the metaphysis of the distal femur and the proximal tibia with those obtained from the iliac crest, and to determine whether these locations represent potential alternative sources of MSCs for research and clinical application. MATERIALS AND METHODS: Bone marrow was aspirated from the iliac crest and the metaphysis of the distal femur and the proximal tibia during total knee arthroplasty in 20 patients. The aspirates were centrifuged by density gradient, then mononucleated cell (MNC) concentration in the different aspirates was determined using a Coulter counter. MSCs were isolated, cultivated and characterised by their immunophenotype and by their in vitro potential for differentiation into osteoblasts, chondroblasts and adipocytes in specific media. Expansion and cell viability were quantified using trypan blue staining and cell counting with a haemocytometer (Neubauer chamber). The three sources were compared in terms of MNC concentration, viability of the cultures and presence of MSC using the Wilcoxon test. RESULTS: MNC concentration was significantly higher in the iliac crest (10.05 Millions/ml) compared with the femur (0.67 Millions/ml) and tibia (1.7 Millions/ml). Culture success rates were 90%, 71% and 47% for MSCs from the iliac crest, femur and tibia, respectively. Flow cytometry analysis showed the presence of CD90+, CD105+, CD73+, VEGF+, CD71+, HLA-DR-, CD45-, CD34-, CD19-, and CD14- cells. The immunophenotype pattern of MSCs was similar for the three locations. Trilineage differentiation was achieved with all samples. CONCLUSIONS: MSCs can be found in bone marrow from the metaphysis of both the distal femur and the proximal tibia. The phenotype and differentiation potential of these cells are similar to those of bone marrow MSCs from the iliac crest. Bone marrow aspiration from these locations is a relatively easy and safe alternative to that from the iliac crest for obtaining MSCs. Further study is required to assess whether the concentrations of MSCs obtained from these sources are sufficient for one-step therapeutic purposes.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Ílio/citologia , Articulação do Joelho/citologia , Células-Tronco Mesenquimais/citologia , Idoso , Células da Medula Óssea/fisiologia , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade
15.
Am Heart J ; 168(1): 88-95.e2, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24952864

RESUMO

AIMS: Adipose-derived regenerative cells (ADRCs) can be isolated from liposuction aspirates and prepared as fresh cells for immediate administration in cell therapy. We performed the first randomized, placebo-controlled, double-blind trial to examine the safety and feasibility of the transendocardial injections of ADRCs in no-option patients with ischemic cardiomyopathy. METHODS AND RESULTS: Procedural, postoperative, and follow-up safety end points were monitored up to 36 months. After baseline measurements, efficacy was assessed by echocardiography and single-photon emission computed tomography (6, 12, and 18 months), metabolic equivalents and maximal oxygen consumption (MVO2) (6 and 18 months), and cardiac magnetic resonance imaging (6 months). We enrolled 21 ADRC-treated and 6 control patients. Liposuction was well tolerated, ADRCs were successfully prepared, and transendocardial injections were feasible in all patients. No malignant arrhythmias were seen. Adverse events were similar between groups. Metabolic equivalents and MVO2 values were preserved over time in ADRC-treated patients but declined significantly in the control group. The difference in the change in MVO2 from baseline to 6 and 18 months was significantly better in ADRC-treated patients compared with controls. The ADRC-treated patients showed significant improvements in total left ventricular mass by magnetic resonance imaging and wall motion score index. Single-photon emission computed tomography results suggested a reduction in inducible ischemia in ADRC-treated patients up to 18 months. CONCLUSION: Isolation and transendocardial injection of autologous ADRCs in no-option patients were safe and feasible. Our results suggest that ADRCs may preserve ventricular function, myocardial perfusion, and exercise capacity in these patients.


Assuntos
Adipócitos/transplante , Transplante de Células/métodos , Isquemia Miocárdica/patologia , Idoso , Ensaio de Unidades Formadoras de Colônias , Método Duplo-Cego , Eletrocardiografia , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Injeções , Imagem Cinética por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/terapia , Estudos Prospectivos , Transplante Autólogo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA