Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 35(8): 1373-1389.e8, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527658

RESUMO

There has been an intense focus to uncover the molecular mechanisms by which fasting triggers the adaptive cellular responses in the major organs of the body. Here, we show that in mice, hepatic S-adenosylmethionine (SAMe)-the principal methyl donor-acts as a metabolic sensor of nutrition to fine-tune the catabolic-fasting response by modulating phosphatidylethanolamine N-methyltransferase (PEMT) activity, endoplasmic reticulum-mitochondria contacts, ß-oxidation, and ATP production in the liver, together with FGF21-mediated lipolysis and thermogenesis in adipose tissues. Notably, we show that glucagon induces the expression of the hepatic SAMe-synthesizing enzyme methionine adenosyltransferase α1 (MAT1A), which translocates to mitochondria-associated membranes. This leads to the production of this metabolite at these sites, which acts as a brake to prevent excessive ß-oxidation and mitochondrial ATP synthesis and thereby endoplasmic reticulum stress and liver injury. This work provides important insights into the previously undescribed function of SAMe as a new arm of the metabolic adaptation to fasting.


Assuntos
Neoplasias Hepáticas , S-Adenosilmetionina , Camundongos , Animais , S-Adenosilmetionina/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Jejum , Trifosfato de Adenosina/metabolismo , Metionina Adenosiltransferase/metabolismo , Fosfatidiletanolamina N-Metiltransferase/metabolismo
2.
EBioMedicine ; 39: 118-131, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30555045

RESUMO

BACKGROUND: Excitatory amino acid transporter 2 (EAAT2) plays a pivotal role in glutamate clearance in the adult brain, thereby preventing excitotoxic effects. Considering the high efficacy of EAAT2 for glutamate uptake, we hypothesized that the expression of this transporter in mesenchymal stem cells (MSCs) for systemic administration could yield a cell-based glutamate-grabbing therapy, combining the intrinsic properties of these cells with excitotoxic protection. METHODS: To address this hypothesis, EAAT2-encoding cDNA was introduced into MSCs and human embryonic kidney 293 cells (HEK cells) as the control cell line. EAAT2 expression and functionality were evaluated by in vitro assays. Blood glutamate-grabbing activity was tested in healthy and ischemic rat models treated with 3 × 106 and 9 × 106 cells/animal. FINDINGS: The expression of EAAT2 in both cell types conferred the expected glutamate-grabbing activity in in vitro and in vivo studies. The functional improvement observed in ischemic rats treated with EAAT2-HEK at low dose, confirmed that this effect was indeed mediated by the glutamate-grabbing activity associated with EAAT2 functionality. Unexpectedly, both cell doses of non-transfected MSCs induced higher protection than transfected EAAT2-MSCs by another mechanism independent of the glutamate-grabbing capacity. INTERPRETATION: Although the transfection procedure most likely interferes with some of the intrinsic protective mechanisms of mesenchymal cells, the results show that the induced expression of EAAT2 in cells represents a novel alternative to mitigate the excitotoxic effects of glutamate and paves the way to combine this strategy with current cell therapies for cerebral ischemia.


Assuntos
Isquemia Encefálica/terapia , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Ácido Glutâmico/sangue , Células-Tronco Mesenquimais/metabolismo , Animais , Isquemia Encefálica/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Células HEK293 , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Ratos , Transfecção
3.
J Invest Surg ; 31(4): 265-274, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28541819

RESUMO

Back pain is a major health problem. The degenerative cascade of the spine begins in the intervertebral disc, due to an impairment in the blood supply through the vertebral endplates. Our objective was to develop a novel disc degeneration model based on these premises, akin to the process in humans, in contrast to other proposed models (puncture, enzyme injection, aberrant loads,…) Material and methods: 37 Sprague-Dawley rats, 2 arms: (a) histological (n = 17, one died), en- bloc sections, Van Gieson staining, (Nisimura-Mochida criteria) and also collagen VI staining (tissue oxidative stress), four animals were euthanized every 2 weeks (2-8); and (b) imaging (n = 20, six wound sloughs), MRI 9.4 Tesla protocol, sequential disc volumetric analysis (24 h-8 weeks) in all animals. Disc degeneration was induced by means of vascular isolation of tail discs endplates either from one side or both. RESULTS: Isolation from both sides caused a progressive degeneration of the disc (p < 0.001 vs. controls), bigger than isolation from one side (p < 0.01 vs. both sides and p < 0.05 vs. controls), as rated by volumetric reduction; furthermore, tissue structural changes (Nisimura-Mochida) and collagen VI deposition confirmed these results. CONCLUSION: the model here described represents a novel and translational tool that reproduces the intervertebral disc degeneration in a similar way to that taking place in human beings.


Assuntos
Modelos Animais de Doenças , Degeneração do Disco Intervertebral/etiologia , Disco Intervertebral/irrigação sanguínea , Ratos , Animais , Colágeno Tipo VI/metabolismo , Humanos , Degeneração do Disco Intervertebral/patologia , Masculino , Estresse Oxidativo , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Cauda
4.
Dis Model Mech ; 10(12): 1433-1438, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259024

RESUMO

Proper occlusion of the medial cerebral artery, as determined by laser Doppler monitoring, during cerebral ischaemia in rat models is an important inclusion criterion in experimental studies. However, successful occlusion of the artery does not always guarantee a reproducible infarct volume, which is crucial for validating the efficacy of new protective drugs. In a rat intraluminal ischaemic model, laser Doppler monitoring alone was compared with laser Doppler monitoring in combination with magnetic resonance angiography (MRA) and diffusion-weighted imaging (DWI). Twenty-eight animals showed successful occlusion and reperfusion determined with Doppler monitoring, with an infarct size at 24 h of 16.7±11.5% (determined as ischaemic damage with respect to the ipsilateral hemisphere volume). However, when arterial occlusion and infarct damage were analysed in these animals using MRA and DWI, respectively, 15 animals were excluded and only 13 animals were included, with an infarct size at 24 h of 21.6±6.1%, showing a variability in the infarct size significantly lower (P<0.05, F-test) than that obtained with Doppler monitoring alone. We also observed that blocking of the pterygopalatine artery (a maxillary artery that is usually occluded in the intraluminal ischaemic model) was not relevant for this model, at least in terms of infarct variability. These results show that laser Doppler monitoring is a necessary procedure, but not sufficient to guarantee a reproducible infarct volume, in a rat ischaemic model. Therefore, laser Doppler monitoring in combination with DWI and MRA represents a reliable inclusion protocol during ischaemic surgery for the analysis of new protective drugs.


Assuntos
Isquemia Encefálica/patologia , Angiografia , Animais , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Masculino , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA