Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(29): 7153-7170, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38952270

RESUMO

Europium ions (Eu3+) are gaining attention in the field of regenerative medicine due to increasing evidence of their osteogenic properties. However, inflammatory and oxidative environments present in many bone diseases, such as osteoporosis or rheumatoid arthritis, are known to hinder this regenerative process. Herein, we describe a straightforward synthetic procedure to prepare Eu3+-tannic acid nanocomplexes (EuTA NCs) with modulable physicochemical characteristics, as well as antioxidant, anti-inflammatory, and osteogenic properties. EuTA NCs were rationally synthesized to present different contents of Eu3+ on their structure to evaluate the effect of the cation on the biological properties of the formulations. In all the cases, EuTA NCs were stable in distilled water at physiological pH, had a highly negative surface charge (ζ ≈ -25.4 mV), and controllable size (80 < Dh < 160 nm). In vitro antioxidant tests revealed that Eu3+ complexation did not significantly alter the total radical scavenging activity (RSA) of TA but enhanced its ability to scavenge H2O2 and ferrous ions, thus improving its overall antioxidant potential. At the cellular level, EuTA NCs reduced the instantaneous toxicity of high concentrations of free TA, resulting in better antioxidant (13.3% increase of RSA vs. TA) and anti-inflammatory responses (17.6% reduction of nitric oxide production vs. TA) on cultures of H2O2- and LPS-stimulated macrophages, respectively. Furthermore, the short-term treatment of osteoblasts with EuTA NCs was found to increase their alkaline phosphatase activity and their matrix mineralization capacity. Overall, this simple and tunable platform is a potential candidate to promote bone growth in complex environments by simultaneously targeting multiple pathophysiological mechanisms of disease.


Assuntos
Regeneração Óssea , Európio , Taninos , Európio/química , Európio/farmacologia , Regeneração Óssea/efeitos dos fármacos , Camundongos , Animais , Células RAW 264.7 , Taninos/química , Taninos/farmacologia , Inflamação/tratamento farmacológico , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Estresse Oxidativo/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Tamanho da Partícula , Propriedades de Superfície , Osteogênese/efeitos dos fármacos , Polifenóis
2.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077450

RESUMO

Methotrexate (MTX) administration is the gold standard treatment for rheumatoid arthritis (RA), but its effects are limited to preventing the progression of the disease. Therefore, effective regenerative therapies for damaged tissues are still to be developed. In this regard, MTX complexes of general molecular formula M(MTX)·xH2O, where M = Sr, Zn, or Mg, were synthesized and physicochemically characterized by TGA, XRD, NMR, ATR-FTIR, and EDAX spectroscopies. Characterization results demonstrated the coordination between the different cations and MTX via two monodentate bonds with the carboxylate groups of MTX. Cation complexation provided MTX with new bioactive properties such as increasing the deposition of glycosaminoglycans (GAGs) and alternative anti-inflammatory capacities, without compromising the immunosuppressant properties of MTX on macrophages. Lastly, these new complexes were loaded into spray-dried chitosan microparticles as a proof of concept that they can be encapsulated and further delivered in situ in RA-affected joints, envisioning them as a suitable alternative to oral MTX therapy.


Assuntos
Antirreumáticos , Artrite Reumatoide , Anti-Inflamatórios/uso terapêutico , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Humanos , Macrófagos , Metotrexato/farmacologia , Metotrexato/uso terapêutico
3.
Eur J Med Chem ; 212: 113152, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33453601

RESUMO

The development of new drugs for musculoskeletal regeneration purposes has attracted much attention in the last decades. In this work, we present three novel vitamin B9 (folic acid)-derivatives bearing divalent cations (ZnFO, MgFO and MnFO), providing their synthesis mechanism and physicochemical characterization. In addition, a strong emphasis has been placed on evaluating their biological properties (along with our previously reported SrFO) using human mesenchymal stem cells (hMSC). In all the cases, pure folate derivatives (MFOs) with a bidentate coordination mode between the metal and the folate anion, and a 1:1 stoichiometry, were obtained in high yields. A non-cytotoxic dose of all the MFOs (50 µg/mL) was demonstrated to modulate by their own the mRNA profiles towards osteogenic-like or fibrocartilaginous-like phenotypes in basal conditions. Moreover, ZnFO increased the alkaline phosphatase activity in basal conditions, while both ZnFO and MnFO increased the matrix mineralization degree in osteoinductive conditions. Thus, we have demonstrated the bioactivity of these novel compounds and the suitability to further studied them in vivo for musculoskeletal regeneration applications.


Assuntos
Materiais Biocompatíveis/química , Ácido Fólico/química , Células-Tronco Mesenquimais/citologia , Sistema Musculoesquelético/citologia , Engenharia Tecidual , Materiais Biocompatíveis/síntese química , Cátions/síntese química , Cátions/química , Células Cultivadas , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Ácido Fólico/síntese química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA