Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Sci Rep ; 14(1): 2173, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273044

RESUMO

A large proportion of patients with severe obesity remain with left ventricular (LV) dysfunction after bariatric surgery. We assessed whether preoperative evaluation by echocardiography and inflammatory proteins can identify this high-risk group. In the Bariatric Surgery on the West Coast of Norway study, 75 patients (44 ± 10 years, body mass index [BMI] 41.5 ± 4.7 kg/m2) were prospectively evaluated by echocardiography and inflammatory proteins (high-sensitivity C-reactive protein [hsCRP], serum amyloid A [SAA] and calprotectin) before and one year after Roux-en-Y gastric bypass surgery. LV mechanics was assessed by the midwall shortening (MWS) and global longitudinal strain (GLS). Bariatric surgery improved BMI and GLS, and lowered hsCRP, calprotectin and SAA (p < 0.05). MWS remained unchanged and 35% of patients had impaired MWS at 1-year follow-up. A preoperative risk index including sex, hypertension, ejection fraction (EF) and high hsCRP (index 1) or SAA (index 2) predicted low 1-year MWS with 81% sensitivity/71% specificity (index 1), and 77% sensitivity/77% specificity (index 2) in ROC analyses (AUC 0.80 and 0.79, p < 0.001). Among individuals with severe obesity, women and patients with hypertension, increased serum levels of inflammatory proteins and reduced EF are at high risk of impaired LV midwall mechanics 1 year after bariatric surgery.ClinicalTrials.gov identifier NCT01533142 February 15, 2012.


Assuntos
Cirurgia Bariátrica , Hipertensão , Obesidade Mórbida , Disfunção Ventricular Esquerda , Humanos , Feminino , Obesidade Mórbida/cirurgia , Proteína C-Reativa , Fatores de Risco , Cirurgia Bariátrica/efeitos adversos , Obesidade/complicações , Complexo Antígeno L1 Leucocitário , Função Ventricular Esquerda , Volume Sistólico
2.
Front Endocrinol (Lausanne) ; 14: 1232171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720534

RESUMO

Obesity is associated with chronic, low-grade inflammation. Excessive nutrient intake causes adipose tissue expansion, which may in turn cause cellular stress that triggers infiltration of pro-inflammatory immune cells from the circulation as well as activation of cells that are residing in the adipose tissue. In particular, the adipose tissue macrophages (ATMs) are important in the pathogenesis of obesity. A pro-inflammatory activation is also found in other organs which are important for energy metabolism, such as the liver, muscle and the pancreas, which may stimulate the development of obesity-related co-morbidities, including insulin resistance, type 2 diabetes (T2D), cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). Interestingly, it is now clear that obesity-induced pro-inflammatory signaling also occurs in the central nervous system (CNS), and that pro-inflammatory activation of immune cells in the brain may be involved in appetite dysregulation and metabolic disturbances in obesity. More recently, it has become evident that microglia, the resident macrophages of the CNS that drive neuroinflammation, may also be activated in obesity and can be relevant for regulation of hypothalamic feeding circuits. In this review, we focus on the action of peripheral and central macrophages and their potential roles in metabolic disease, and how macrophages interact with other immune cells to promote inflammation during obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Obesidade , Macrófagos , Microglia , Inflamação
3.
Clin Obes ; 13(5): e12618, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37583310

RESUMO

We investigated whether adding gastropexy to sleeve gastrectomy (SG) reduced gastroesophageal reflux disease (GERD) in patients operated for severe obesity, assessed mainly by use of anti-reflux medication (ARM) and second operations due to GERD worsening. In a prospective non-randomized study, patients undergoing SG at two Norwegian hospitals were included from 2011 to 2015 and followed for 7 years. GERD was defined by regular use of ARM, and epigastric pain and heartburn were measured by the Rome II questionnaire. Gastropexy was done by suturing the gastrocolic ligament to the staple line. Patients undergoing SG only, mainly before gastropexia was introduced in 2013, were compared to those with additional gastropexy from 2013 onwards. Of 376 included patients (75% females, mean age 42.6 years and BMI 42.9 kg/m2 ), 350 (93%) and 232 (62%) were available for evaluation after 1 and 7 years, respectively. Baseline characteristics in the no-gastropexy (n = 235) and gastropexy groups (n = 141) were similar. In patients without ARM use before surgery, the use increased and in those that used ARM at baseline, the proportion decreased, with no difference in the no-gastropexy and gastropexy groups. With a combined endpoint of ARM use and/or second operation for GERD, there was no difference during follow-up between the two groups. With time, adding gastropexy did not reduce symptoms of GERD significantly. In this population, adding gastropexy to SG did not reduce use of ARM and/or second operation for uncontrolled GERD, epigastric pain or heartburn during the first 7 postoperative years.


Assuntos
Refluxo Gastroesofágico , Laparoscopia , Obesidade Mórbida , Feminino , Humanos , Adulto , Masculino , Azia/etiologia , Azia/cirurgia , Estudos Prospectivos , Refluxo Gastroesofágico/tratamento farmacológico , Refluxo Gastroesofágico/etiologia , Refluxo Gastroesofágico/cirurgia , Obesidade Mórbida/cirurgia , Gastrectomia/efeitos adversos , Laparoscopia/efeitos adversos , Dor/etiologia , Dor/cirurgia , Estudos Retrospectivos
4.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108048

RESUMO

Proteoglycans are central components of the extracellular matrix (ECM) and binding partners for inflammatory chemokines. Morphological differences in the ECM and increased inflammation are prominent features of the white adipose tissues in patients with obesity. The impact of obesity and weight loss on the expression of specific proteoglycans in adipose tissue is not well known. This study aimed to investigate the relationship between adiposity and proteoglycan expression. We analyzed transcriptomic data from two human bariatric surgery cohorts. In addition, RT-qPCR was performed on adipose tissues from female and male mice fed a high-fat diet. Both visceral and subcutaneous adipose tissue depots were analyzed. Adipose mRNA expression of specific proteoglycans, proteoglycan biosynthetic enzymes, proteoglycan partner molecules, and other ECM-related proteins were altered in both human cohorts. We consistently observed more profound alterations in gene expression of ECM targets in the visceral adipose tissues after surgery (among others VCAN (p = 0.000309), OGN (p = 0.000976), GPC4 (p = 0.00525), COL1A1 (p = 0.00221)). Further, gene analyses in mice revealed sex differences in these two tissue compartments in obese mice. We suggest that adipose tissue repair is still in progress long after surgery, which may reflect challenges in remodeling increased adipose tissues. This study can provide the basis for more mechanistic studies on the role of proteoglycans in adipose tissues in obesity.


Assuntos
Tecido Adiposo , Proteoglicanas , Feminino , Humanos , Masculino , Animais , Camundongos , Proteoglicanas/genética , Proteoglicanas/metabolismo , Tecido Adiposo/metabolismo , Obesidade/genética , Obesidade/metabolismo , Gordura Subcutânea/metabolismo , Adiposidade , Proteínas da Matriz Extracelular/metabolismo , Dieta Hiperlipídica/efeitos adversos
5.
Front Endocrinol (Lausanne) ; 13: 856530, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480482

RESUMO

A chronic low-grade inflammation, originating in the adipose tissue, is considered a driver of obesity-associated insulin resistance. Macrophage composition in white adipose tissue is believed to contribute to the pathogenesis of metabolic diseases, but a detailed characterization of pro- and anti-inflammatory adipose tissue macrophages (ATMs) in human obesity and how they are distributed in visceral- and subcutaneous adipose depots is lacking. In this study, we performed a surface proteome screening of pro- and anti-inflammatory ATMs in both subcutaneous- (SAT) and visceral adipose tissue (VAT) and evaluated their relationship with systemic insulin resistance. From the proteomics screen we found novel surface proteins specific to M1-like- and M2-like macrophages, and we identified depot-specific immunophenotypes in SAT and VAT. Furthermore, we found that insulin resistance, assessed by HOMA-IR, was positively associated with a relative increase in pro-inflammatory M1-like macrophages in both SAT and VAT.


Assuntos
Resistência à Insulina , Tecido Adiposo/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Obesidade/complicações
6.
Int J Obes (Lond) ; 46(4): 739-749, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34974544

RESUMO

BACKGROUND/OBJECTIVES: There is limited long-term data comparing the outcomes of sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) for severe obesity, both with respect to body weight, quality of life (QOL) and comorbidities. We aimed to determine 7-year trajectories of body mass index (BMI), QOL, obesity-related comorbidities, biomarkers of glucose and lipid metabolism, and early major complications after SG and RYGB. SUBJECTS/METHODS: Patients scheduled for bariatric surgery at two Norwegian hospitals, preferentially performing either SG or RYGB, were included consecutively from September 2011 to February 2015. Data was collected prospectively before and up to 7 years after surgery. Obesity-specific, generic and overall QOL were measured by the Impact of Weight on Quality of Life-Lite, Short-Form 36 and Cantril's ladder, respectively. Comorbidities were assessed by clinical examination, registration of medication and analysis of glucose and lipid biomarkers. Outcomes were examined with linear mixed effect models and relative risk estimates. RESULTS: Of 580 included patients, 543 (75% women, mean age 42.3 years, mean baseline BMI 43.0 kg/m2) were operated (376 SG and 167 RYGB). With 84.2% of participants evaluable after 5-7 years, model-based percent total weight-loss (%TWL) at 7 years was 23.4 after SG versus 27.3 after RYGB (difference 3.9%, p = 0.001). All levels of QOL improved similarly after the two surgical procedures but remained below reference data from the general population at all timepoints. Remission rates for type 2 diabetes, dyslipidemia, obstructive sleep-apnea and gastroesophageal reflux disease (GERD) as well as the rate of de novo GERD significantly favored RYGB. SG had fewer major early complications, but more minor and major late complications combined over follow-up. CONCLUSION: In routine health care, both SG and RYGB are safe procedures with significant long-term weight-loss, improvement of QOL and amelioration of comorbidities. Long-term weight-loss and remission rates of main obesity-related comorbidities were higher after RYGB.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Refluxo Gastroesofágico , Obesidade Mórbida , Adulto , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/cirurgia , Feminino , Gastrectomia , Derivação Gástrica/métodos , Refluxo Gastroesofágico/complicações , Refluxo Gastroesofágico/cirurgia , Glucose , Humanos , Masculino , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/cirurgia , Obesidade Mórbida/complicações , Obesidade Mórbida/epidemiologia , Obesidade Mórbida/cirurgia , Qualidade de Vida , Estudos Retrospectivos , Resultado do Tratamento , Redução de Peso
7.
J Immunol ; 208(1): 121-132, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34872979

RESUMO

Chronic local inflammation of adipose tissue is an important feature of obesity. Serglycin is a proteoglycan highly expressed by various immune cell types known to infiltrate adipose tissue under obese conditions. To investigate if serglycin expression has an impact on diet-induced adipose tissue inflammation, we subjected Srgn +/+ and Srgn -/- mice (C57BL/6J genetic background) to an 8-wk high-fat and high-sucrose diet. The total body weight was the same in Srgn +/+ and Srgn -/- mice after diet treatment. Expression of white adipose tissue genes linked to inflammatory pathways were lower in Srgn -/- mice. We also noted reduced total macrophage abundance, a reduced proportion of proinflammatory M1 macrophages, and reduced formation of crown-like structures in adipose tissue of Srgn -/- compared with Srgn +/+ mice. Further, Srgn -/- mice had more medium-sized adipocytes and fewer large adipocytes. Differentiation of preadipocytes into adipocytes (3T3-L1) was accompanied by reduced Srgn mRNA expression. In line with this, analysis of single-cell RNA sequencing data from mouse and human adipose tissue supports that Srgn mRNA is predominantly expressed by various immune cells, with low expression in adipocytes. Srgn mRNA expression was higher in obese compared with lean humans and mice, accompanied by an increased expression of immune cell gene markers. SRGN and inflammatory marker mRNA expression was reduced upon substantial weight loss in patients after bariatric surgery. Taken together, this study introduces a role for serglycin in the regulation of obesity-induced adipose inflammation.


Assuntos
Adipócitos/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Obesidade/metabolismo , Proteoglicanas/metabolismo , RNA Mensageiro/genética , Proteínas de Transporte Vesicular/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/imunologia , Proteoglicanas/genética , Proteínas de Transporte Vesicular/genética , Redução de Peso/imunologia
8.
Nat Commun ; 12(1): 5068, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417460

RESUMO

p53 regulates several signaling pathways to maintain the metabolic homeostasis of cells and modulates the cellular response to stress. Deficiency or excess of nutrients causes cellular metabolic stress, and we hypothesized that p53 could be linked to glucose maintenance. We show here that upon starvation hepatic p53 is stabilized by O-GlcNAcylation and plays an essential role in the physiological regulation of glucose homeostasis. More specifically, p53 binds to PCK1 promoter and regulates its transcriptional activation, thereby controlling hepatic glucose production. Mice lacking p53 in the liver show a reduced gluconeogenic response during calorie restriction. Glucagon, adrenaline and glucocorticoids augment protein levels of p53, and administration of these hormones to p53 deficient human hepatocytes and to liver-specific p53 deficient mice fails to increase glucose levels. Moreover, insulin decreases p53 levels, and over-expression of p53 impairs insulin sensitivity. Finally, protein levels of p53, as well as genes responsible of O-GlcNAcylation are elevated in the liver of type 2 diabetic patients and positively correlate with glucose and HOMA-IR. Overall these results indicate that the O-GlcNAcylation of p53 plays an unsuspected key role regulating in vivo glucose homeostasis.


Assuntos
Acetilglucosamina/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Sequência de Bases , Restrição Calórica , Linhagem Celular , Colforsina/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Epinefrina/metabolismo , Glucagon/metabolismo , Glucocorticoides/metabolismo , Gluconeogênese/efeitos dos fármacos , Glicosilação , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hidrocortisona/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/complicações , Obesidade/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Ácido Pirúvico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
9.
Front Endocrinol (Lausanne) ; 12: 669980, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149618

RESUMO

Anorexia nervosa (AN) is an eating disorder leading to malnutrition and, ultimately, to energy wasting and cachexia. Rodents develop activity-based anorexia (ABA) when simultaneously exposed to a restricted feeding schedule and allowed free access to running wheels. These conditions lead to a life-threatening reduction in body weight, resembling AN in human patients. Here, we investigate the effect of ABA on whole body energy homeostasis at different housing temperatures. Our data show that ABA rats develop hyperactivity and hypophagia, which account for a massive body weight loss and muscle cachexia, as well as reduced uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT), but increased browning of white adipose tissue (WAT). Increased housing temperature reverses not only the hyperactivity and weight loss of animals exposed to the ABA model, but also hypothermia and loss of body and muscle mass. Notably, despite the major metabolic impact of ABA, none of the changes observed are associated to changes in key hypothalamic pathways modulating energy metabolism, such as AMP-activated protein kinase (AMPK) or endoplasmic reticulum (ER) stress. Overall, this evidence indicates that although temperature control may account for an improvement of AN, key hypothalamic pathways regulating thermogenesis, such as AMPK and ER stress, are unlikely involved in later stages of the pathophysiology of this devastating disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/patologia , Anorexia/fisiopatologia , Hipotálamo/patologia , Termogênese , Proteína Desacopladora 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Metabolismo Energético , Homeostase , Hipotálamo/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Desacopladora 1/genética
10.
Int J Mol Sci ; 22(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546289

RESUMO

Several studies have reported that nicotine, the main bioactive component of tobacco, exerts a marked negative energy balance. Apart from its anorectic action, nicotine also modulates energy expenditure, by regulating brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. These effects are mainly controlled at the central level by modulation of hypothalamic neuropeptide systems and energy sensors, such as AMP-activated protein kinase (AMPK). In this study, we aimed to investigate the kappa opioid receptor (κOR)/dynorphin signaling in the modulation of nicotine's effects on energy balance. We found that body weight loss after nicotine treatment is associated with a down-regulation of the κOR endogenous ligand dynorphin precursor and with a marked reduction in κOR signaling and the p70 S6 kinase/ribosomal protein S6 (S6K/rpS6) pathway in the lateral hypothalamic area (LHA). The inhibition of these pathways by nicotine was completely blunted in κOR deficient mice, after central pharmacological blockade of κOR, and in rodents where κOR was genetically knocked down specifically in the LHA. Moreover, κOR-mediated nicotine effects on body weight do not depend on orexin. These data unravel a new central regulatory pathway modulating nicotine's effects on energy balance.


Assuntos
Região Hipotalâmica Lateral/metabolismo , Nicotina/farmacologia , Receptores Opioides kappa/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Peso Corporal , Dinorfinas/metabolismo , Metabolismo Energético , Região Hipotalâmica Lateral/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
11.
Diabetes ; 70(3): 680-695, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33408126

RESUMO

Elucidation of mechanisms that govern lipid storage, oxidative stress, and insulin resistance may lead to improved therapeutic options for type 2 diabetes and other obesity-related diseases. Here, we find that adipose expression of the small neutral amino acid transporter SLC7A10, also known as alanine-serine-cysteine transporter-1 (ASC-1), shows strong inverse correlates with visceral adiposity, insulin resistance, and adipocyte hypertrophy across multiple cohorts. Concordantly, loss of Slc7a10 function in zebrafish in vivo accelerates diet-induced body weight gain and adipocyte enlargement. Mechanistically, SLC7A10 inhibition in human and murine adipocytes decreases adipocyte serine uptake and total glutathione levels and promotes reactive oxygen species (ROS) generation. Conversely, SLC7A10 overexpression decreases ROS generation and increases mitochondrial respiratory capacity. RNA sequencing revealed consistent changes in gene expression between human adipocytes and zebrafish visceral adipose tissue following loss of SLC7A10, e.g., upregulation of SCD (lipid storage) and downregulation of CPT1A (lipid oxidation). Interestingly, ROS scavenger reduced lipid accumulation and attenuated the lipid-storing effect of SLC7A10 inhibition. These data uncover adipocyte SLC7A10 as a novel important regulator of adipocyte resilience to nutrient and oxidative stress, in part by enhancing glutathione levels and mitochondrial respiration, conducive to decreased ROS generation, lipid accumulation, adipocyte hypertrophy, insulin resistance, and type 2 diabetes.


Assuntos
Adipócitos/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Células 3T3-L1 , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Western Blotting , Diabetes Mellitus Tipo 2/metabolismo , Genótipo , Glutationa/metabolismo , Humanos , Resistência à Insulina/fisiologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA , Peixe-Zebra
12.
Neuroscience ; 447: 191-215, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33046217

RESUMO

In the last thirty years, obesity has reached epidemic proportions and is now regarded as a major health issue in contemporary society trending to serious economic and social burdens. The latest projections of the World Health Organization are alarming. By 2030, nearly 60% of the worldwide population could be either obese or overweight, highlighting the needs to find innovative treatments. Currently, bariatric surgery is the most effective way to efficiently lower body mass. Although great improvements in terms of recovery and patient care were made in these surgical procedures, bariatric surgery remains an option for extreme forms of obesity and seems unable to tackle obesity pandemic expansion. Throughout the last century, numerous pharmacological strategies targeting either peripheral or central components of the energy balance regulatory system were designed to reduce body mass, some of them reaching sufficient levels of efficiency and safety. Nevertheless, obesity drug therapy remains quite limited on its effectiveness to actually overcome the obesogenic environment. Thus, innovative unimolecular polypharmacology strategies, able to simultaneously target multiple actors involved in the obesity initiation and expansion, were developed during the last ten years opening a new promising avenue in the pharmacological management of obesity. In this review, we first describe the clinical features of obesity-associated conditions and then focus on the outcomes of currently approved drug therapies for obesity as well as new ones expecting to reach the clinic in the near future.

13.
Neuroscience ; 437: 215-239, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32360593

RESUMO

In the last thirty years, obesity has reached epidemic proportions and is now regarded as a major health issue in contemporary society trending to serious economic and social burdens. The latest projections of the World Health Organization are alarming. By 2030, nearly 60% of the worldwide population could be either obese or overweight, highlighting the needs to find innovative treatments. Currently, bariatric surgery is the most effective way to efficiently lower body mass. Although great improvements in terms of recovery and patient care were made in these surgical procedures, bariatric surgery remains an option for extreme forms of obesity and seems unable to tackle obesity pandemic expansion. Throughout the last century, numerous pharmacological strategies targeting either peripheral or central components of the energy balance regulatory system were designed to reduce body mass, some of them reaching sufficient levels of efficiency and safety. Nevertheless, obesity drug therapy remains quite limited on its effectiveness to actually overcome the obesogenic environment. Thus, innovative unimolecular polypharmacology strategies, able to simultaneously target multiple actors involved in the obesity initiation and expansion, were developed during the last ten years opening a new promising avenue in the pharmacological management of obesity. In this review, we first describe the clinical features of obesity-associated conditions and then focus on the outcomes of currently approved drug therapies for obesity as well as new ones expecting to reach the clinic in the near future.


Assuntos
Cirurgia Bariátrica , Preparações Farmacêuticas , Humanos , Obesidade/tratamento farmacológico
14.
Trends Endocrinol Metab ; 31(1): 3-12, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31597606

RESUMO

Adipose tissue macrophages (ATMs) orchestrate low-grade chronic adipose tissue inflammation, linking obesity and insulin resistance. Whereas factors contributing to macrophage accumulation in adipose tissue are established, little is known regarding signals that link adipocyte stress to proinflammatory activation of macrophages. Natural killer (NK) cells are specialized innate lymphocytes that identify and respond to stressed cells. In this Opinion, we discuss the possibility of NK cells to function as sensors recognizing adipose tissue stress. We further summarize recent literature suggesting NK cells to play an important role in development of insulin resistance via secretion of cytokines that stimulate proinflammatory polarization of ATMs. This suggests adipose tissue-resident NK cells as a pharmacological target for the treatment of obesity-induced insulin resistance.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Animais , Humanos , Resistência à Insulina/fisiologia , Macrófagos/citologia , Macrófagos/metabolismo
15.
Sci Rep ; 9(1): 14817, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616017

RESUMO

The objective of this study was to compare the biochemical changes related to glucose tolerance and lipid metabolism in non-diabetic patients shortly after vertical sleeve gastrectomy (SG) or Roux-en-Y gastric bypass (RYGB). Non-diabetic women and men with morbid obesity were studied the day before and six days after SG (N = 15) or RYGB (N = 16). Patients completed an oral glucose tolerance test (OGTT; 75 g glucose) at both visits. SG and RYGB similarly improved fasting glucose homeostasis six days after surgery, with reduced glucose and insulin concentrations. The OGTT revealed differences between the two surgery groups that were not evident from the fasting serum concentrations. Postprandial (120 min) glucose and insulin concentrations were lower after RYGB but not after SG, whereas concentrations of glucagon-like peptide-1, peptide YY, glucagon and non-esterified fatty acids were elevated after both SG and RYGB. Fasting triacylglycerol concentration did not change after surgery, but concentrations of high density lipoprotein and low density lipoprotein cholesterols were reduced in both surgery groups, with no differences between the groups. To conclude, RYGB induced a more pronounced improvement in postprandial glucose homeostasis relative to SG, possibly due to improved insulin sensitivity rather than augmented insulin concentration.


Assuntos
Glicemia/metabolismo , Gastrectomia , Derivação Gástrica , Resistência à Insulina , Obesidade Mórbida/cirurgia , Adulto , Glicemia/análise , Jejum/sangue , Jejum/metabolismo , Feminino , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/sangue , Obesidade Mórbida/metabolismo , Período Pós-Operatório
16.
Int J Mol Sci ; 20(16)2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405212

RESUMO

Glucagon exerts pleiotropic actions on energy balance and has emerged as an attractive target for the treatment of diabetes and obesity in the last few years. Glucagon reduces body weight and adiposity by suppression of appetite and by modulation of lipid metabolism. Moreover, this hormone promotes weight loss by activation of energy expenditure and thermogenesis. In this review, we cover these metabolic actions elicited by glucagon beyond its canonical regulation of glucose metabolism. In addition, we discuss recent developments of therapeutic approaches in the treatment of obesity and diabetes by dual- and tri-agonist molecules based on combinations of glucagon with other peptides. New strategies using these unimolecular polyagonists targeting the glucagon receptor (GCGR), have become successful approaches to evaluate the multifaceted nature of glucagon signaling in energy balance and metabolic syndrome.


Assuntos
Regulação do Apetite , Diabetes Mellitus/metabolismo , Metabolismo Energético , Glucagon/metabolismo , Obesidade/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Regulação do Apetite/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Glucagon/agonistas , Glucose/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Terapia de Alvo Molecular , Obesidade/tratamento farmacológico , Peptídeos/farmacologia , Receptores de Glucagon/metabolismo , Termogênese/efeitos dos fármacos
17.
Front Immunol ; 10: 1255, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214196

RESUMO

Non-alcoholic fatty liver disease (NAFLD), and the progressive stage non-alcoholic steatohepatitis (NASH), is the predominant cause of chronic liver disease globally. As part of the complex pathogenesis, natural killer (NK) cells have been implicated in the development of liver inflammation in experimental murine models of NASH. However, there is a lack of knowledge on how NK cells are affected in humans with this disease. Here, we explored the presence of disease-specific changes within circulating and tissue-resident NK cell populations, as well as within other major immune cell subsets, in patients with liver biopsy-confirmed NAFLD. Using 18-color-flow cytometry, substantial changes were observed in certain myeloid populations in patients as compared to controls. NK cell numbers, on the other hand, were not altered. Furthermore, only minor differences in expression of activating and inhibitory NK cell receptors were noted, with the exception of an increased expression of NKG2D on NK cells from patients with NASH. NK cell differentiation remained constant, and NK cells from these patients retain their ability to respond adequately upon stimulation. Instead, considerable alterations were observed between liver, adipose tissue, and peripheral blood NK cells, independently of disease status. Taken together, these results increase our understanding of the importance of the local microenvironment in shaping the NK cell compartment and stress the need for further studies exploring how NASH affects intrahepatic NK cells in humans.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adulto , Idoso , Biomarcadores , Suscetibilidade a Doenças , Feminino , Humanos , Imunofenotipagem , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Obesidade/metabolismo , Especificidade de Órgãos/imunologia
18.
Expert Opin Drug Discov ; 14(5): 421-431, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30821530

RESUMO

INTRODUCTION: Current pharmacological therapies that target single receptors have limited efficacy for the treatment of diabetes and obesity. Novel approaches with hybrid peptides that activate more than one receptor at once to generate beneficial effects through synergistic effects have shown promising results. Several unimolecular dual and tri-agonists, mainly associated with GPCR like GLP-1/GCG/GIP receptors, have shown exceptional efficacy in preclinical models, and are currently being evaluated in clinical trials to investigate their safety and beneficial effects in humans. Areas covered: Herein, the authors review the development of drugs used in the treatment of metabolic disease, from single agonists to the new generation of tri-agonist peptides and compile the latest knowledge available on GPCR-based drug discovery. The authors also provide the reader with their expert perspectives on this exciting area of drug development. Expert opinion: The co-agonists that have been clinically tested so far have been well tolerated and reduce body weight as well as fasting glucose levels in patients with Type 2 Diabetes Mellitus to a higher degree than single agonists alone. The promising data collected so far now warrant large scale randomized clinical trials to assess whether a unimolecular polypharmacy-based approach could translate into safe and efficacious treatments for obesity and its comorbidities.


Assuntos
Descoberta de Drogas/métodos , Doenças Metabólicas/tratamento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Desenvolvimento de Medicamentos/métodos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Doenças Metabólicas/fisiopatologia , Obesidade/tratamento farmacológico , Obesidade/fisiopatologia , Receptores Acoplados a Proteínas G/metabolismo
19.
Cell Rep ; 25(2): 413-423.e5, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304681

RESUMO

Compelling evidence has shown that, besides its putative effect on the regulation of the gonadal axis, estradiol (E2) exerts a dichotomic effect on the hypothalamus to regulate food intake and energy expenditure. The anorectic effect of E2 is mainly mediated by its action on the arcuate nucleus (ARC), whereas its effects on brown adipose tissue (BAT) thermogenesis occur in the ventromedial nucleus (VMH). Here, we demonstrate that central E2 decreases hypothalamic ceramide levels and endoplasmic reticulum (ER) stress. Pharmacological or genetic blockade of ceramide synthesis and amelioration of ER stress selectively occurring in the VMH recapitulate the effect of E2, leading to increased BAT thermogenesis, weight loss, and metabolic improvement. These findings demonstrate that E2 regulation of ceramide-induced hypothalamic lipotoxicity and ER stress is an important determinant of energy balance, suggesting that dysregulation of this mechanism may underlie some changes in energy homeostasis seen in females.


Assuntos
Tecido Adiposo Marrom/fisiologia , Ceramidas/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Estradiol/farmacologia , Hipotálamo/fisiologia , Termogênese/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Estrogênios/farmacologia , Feminino , Homeostase , Hipotálamo/efeitos dos fármacos , Ratos
20.
Nat Commun ; 9(1): 3432, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143607

RESUMO

p53 is a well-known tumor suppressor that has emerged as an important player in energy balance. However, its metabolic role in the hypothalamus remains unknown. Herein, we show that mice lacking p53 in agouti-related peptide (AgRP), but not proopiomelanocortin (POMC) or steroidogenic factor-1 (SF1) neurons, are more prone to develop diet-induced obesity and show reduced brown adipose tissue (BAT) thermogenic activity. AgRP-specific ablation of p53 resulted in increased hypothalamic c-Jun N-terminal kinase (JNK) activity before the mice developed obesity, and central inhibition of JNK reversed the obese phenotype of these mice. The overexpression of p53 in the ARC or specifically in AgRP neurons of obese mice decreased body weight and stimulated BAT thermogenesis, resulting in body weight loss. Finally, p53 in AgRP neurons regulates the ghrelin-induced food intake and body weight. Overall, our findings provide evidence that p53 in AgRP neurons is required for normal adaptations against diet-induced obesity.


Assuntos
Dieta/efeitos adversos , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Tecido Adiposo Marrom/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 8 Ativada por Mitógeno/genética , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Ratos Sprague-Dawley , Fator Esteroidogênico 1/metabolismo , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA