Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Biochem Cell Biol ; 115: 105592, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31454684

RESUMO

Melanoma is the most aggressive type of cutaneous tumors due to its metastatic potential and high mortality. Increased levels of reactive oxygen species, including superoxide anion (O2-), and the consequent installation of a pro-oxidant environment are associated with melanoma development. The enzyme nitric oxide synthase (NOS), responsible for the production of nitric oxide (NO), when uncoupled is as a source of O2-, for example by the absence of its cofactor tetrahydrobiopterin (BH4). Western blot analysis showed increased expression of endothelial and inducible NOS in human melanoma cells, altering the stoichiometry between NOS levels and BH4 concentration and together with decreased BH4:BH2 ratio are contributing to NOS uncoupling. The treatment of melanoma cells with exogenous BH4 increased NO concentration and decreased O2- levels, leading to NOS coupling, which in turn reduced cell viability, cell proliferation and the ability of melanoma cells to form melanoma spheroids. Moreover, BH4 level restoration rendered melanoma cells more sensitive to apoptosis, demonstrating the role of dysfunctional NOS in melanoma genesis.


Assuntos
Carcinogênese , Melanoma/patologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Superóxidos/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Humanos , Melanócitos/patologia , Melanoma/enzimologia , Melanoma/metabolismo , Metástase Neoplásica
2.
Hum Gene Ther ; 28(8): 639-653, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28181816

RESUMO

Previously, the authors developed an adenoviral vector, Ad-PG, where transgene expression is regulated by a p53-responsive promoter. When used to transfer the p53 cDNA, a positive feedback mechanism is established. In the present study, a critical comparison is performed between Ad-PGp53 and AdRGD-PGp53, where the RGD motif was incorporated in the adenoviral fiber protein. AdRGD-PGp53 provided superior transgene expression levels and resulted in the killing of prostate carcinoma cell lines DU145 and PC3. In vitro, this effect was associated with increased production of cytoplasmic and mitochondrial oxidants, DNA damage as revealed by detection of phosphorylated H2AX, as well as cell death consistent with apoptosis. Differential gene expression of key mediators of reactive oxygen species pathways was also observed. Specifically, it was noted that induction of known p53-target genes Sestrin2 and PIG3, as well as a novel target, NOX1, occurred in PC3 cells only when transduced with the improved vector, AdRGD-PGp53. The participation of NOX1 was confirmed upon its inhibition using a specific peptide, resulting in reduced cell death. In situ gene therapy also resulted in significantly improved inhibition of tumor progression consistent with oxidant-induced DNA damage only when treated with the novel AdRGD-PGp53 vector. The study shows that the improved adenovirus overcomes limitations associated with other p53-expressing vectors and induces oxidant-mediating killing, thus supporting its further development for cancer gene therapy.


Assuntos
Adenoviridae/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Oxidantes/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Dano ao DNA , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Masculino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Espécies Reativas de Oxigênio/metabolismo , Transdução Genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cell Physiol Biochem ; 39(1): 371-84, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27351177

RESUMO

BACKGROUND/AIMS: Although increased oxidative stress plays a role in heart failure (HF)-induced skeletal myopathy, signaling pathways involved in muscle changes and the role of antioxidant agents have been poorly addressed. We evaluated the effects of N-acetylcysteine (NAC) on intracellular signaling pathways potentially modulated by oxidative stress in soleus muscle from HF rats. METHODS AND RESULTS: Four months after surgery, rats were assigned to Sham, myocardial infarction (MI)-C (without treatment), and MI-NAC (treated with N-acetylcysteine) groups. Two months later, echocardiogram showed left ventricular dysfunction in MI-C; NAC attenuated diastolic dysfunction. Oxidative stress was evaluated in serum and soleus muscle; malondialdehyde was higher in MI-C than Sham and did not differ between MI-C and MI-NAC. Oxidized glutathione concentration in soleus muscle was similar in Sham and MI-C, and lower in MI-NAC than MI-C (Sham 0.168 ± 0.056; MI-C 0.223 ± 0.073; MI-NAC 0.136 ± 0.023 nmol/mg tissue; p = 0.014). Western blot showed increased p-JNK and decreased p38, ERK1/2, and p-ERK1/2 in infarcted rats. NAC restored ERK1/2. NF-954;B p65 subunit was reduced; p-Ser276 in p65 and I954;B was increased; and p-Ser536 unchanged in MI-C compared to Sham. NAC did not modify NF-954;B p65 subunit, but decreased p-Ser276 and p-Ser536. CONCLUSION: N-acetylcysteine modulates MAPK and NF-954;B signaling pathways in soleus muscle of HF rats.


Assuntos
Acetilcisteína/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Esquelético/efeitos dos fármacos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Western Blotting , Ecocardiografia , Expressão Gênica/efeitos dos fármacos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miogenina/genética , Miogenina/metabolismo , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia
4.
In. Kalil Filho, Roberto; Fuster, Valetim; Albuquerque, Cícero Piva de. Medicina cardiovascular reduzindo o impacto das doenças / Cardiovascular medicine reducing the impact of diseases. São Paulo, Atheneu, 2016. p.89-106.
Monografia em Português | LILACS | ID: biblio-971530
5.
Cell Physiol Biochem ; 35(1): 148-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25591758

RESUMO

BACKGROUND: Chronic heart failure is characterized by decreased exercise capacity with early exacerbation of fatigue and dyspnea. Intrinsic skeletal muscle abnormalities can play a role in exercise intolerance. Causal or contributing factors responsible for muscle alterations have not been completely defined. This study evaluated skeletal muscle oxidative stress and NADPH oxidase activity in rats with myocardial infarction (MI) induced heart failure. METHODS AND RESULTS: Four months after MI, rats were assigned to Sham, MI-C (without treatment), and MI-NAC (treated with N-acetylcysteine) groups. Two months later, echocardiogram showed left ventricular dysfunction in MI-C; NAC attenuated diastolic dysfunction. In soleus muscle, glutathione peroxidase and superoxide dismutase activity was decreased in MI-C and unchanged by NAC. 3-nitrotyrosine was similar in MI-C and Sham, and lower in MI-NAC than MI-C. Total reactive oxygen species (ROS) production was assessed by HPLC analysis of dihydroethidium (DHE) oxidation fluorescent products. The 2-hydroxyethidium (EOH)/DHE ratio did not differ between Sham and MI-C and was higher in MI-NAC. The ethidium/DHE ratio was higher in MI-C than Sham and unchanged by NAC. NADPH oxidase activity was similar in Sham and MI-C and lower in MI-NAC. Gene expression of p47(phox) was lower in MI-C than Sham. NAC decreased NOX4 and p22(phox) expression. CONCLUSIONS: We corroborate the case that oxidative stress is increased in skeletal muscle of heart failure rats and show for the first time that oxidative stress is not related to increased NADPH oxidase activity.


Assuntos
Acetilcisteína/farmacologia , Sequestradores de Radicais Livres/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Etídio/análogos & derivados , Etídio/análise , Glutationa Peroxidase/metabolismo , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Ventrículos do Coração/fisiopatologia , Masculino , Malondialdeído/sangue , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , NADPH Oxidase 4 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Tirosina/análogos & derivados , Tirosina/análise
6.
Free Radic Biol Med ; 52(2): 427-35, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22037515

RESUMO

Nitroglycerin (GTN) has been clinically used to treat angina pectoris and acute heart episodes for over 100 years. The effects of GTN have long been recognized and active research has contributed to the unraveling of numerous metabolic routes capable of converting GTN to the potent vasoactive messenger nitric oxide. Recently, the mechanism by which minute doses of GTN elicit robust pharmacological responses was revisited and eNOS activation was implicated as an important route mediating vasodilation induced by low GTN doses (1-50nM). Here, we demonstrate that at such concentrations the pharmacologic effects of nitroglycerin are largely dependent on the phosphatidylinositol 3-kinase, Akt/PKB, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signal transduction axis. Furthermore, we demonstrate that nitroglycerin-dependent accumulation of 3,4,5-InsP(3), probably because of inhibition of PTEN, is important for eNOS activation, conferring a mechanistic basis for GTN pharmacological action at pharmacologically relevant doses.


Assuntos
Óxido Nítrico Sintase Tipo III/metabolismo , Nitroglicerina/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vasodilatadores/farmacologia , Androstadienos/farmacologia , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Bovinos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Ativação Enzimática , Humanos , Técnicas In Vitro , Masculino , Camundongos , Microvasos/citologia , Microvasos/efeitos dos fármacos , Óxido Nítrico/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Vasodilatação/efeitos dos fármacos , Wortmanina
7.
J Agric Food Chem ; 59(12): 6430-7, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21563839

RESUMO

The antioxidant capacity of propolis from the southern region of Uruguay was evaluated using in vitro as well as cellular assays. Free radical scavenging capacity was assessed by ORAC, obtaining values significantly higher than those of other natural products (8000 µmol Trolox equiv/g propolis). ORAC values correlated well with total polyphenol content (determined by Folin-Ciocalteu method) and UV absorption. Total polyphenol content (150 mg gallic acid equiv/g propolis) and flavonoids (45 mg quercetin equiv/g propolis) were similar to values reported for southern Brazilian (group 3) and Argentinean propolis. Flavonoid composition determined by RP-HPLC indicates a strong poplar-tree origin. Samples high in polyphenols efficiently inhibit low-density lipoprotein lipoperoxidation and tyrosine nitration. In addition, Uruguayan propolis was found to induce the expression of endothelial nitric oxide synthase and inhibit endothelial NADPH oxidase, suggesting a potential cardiovascular benefit by increasing nitric oxide bioavailability in the endothelium.


Assuntos
Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Própole/química , Antioxidantes/análise , Linhagem Celular , Flavonoides/análise , Flavonoides/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Fenóis/análise , Fenóis/farmacologia , Extratos Vegetais/análise , Polifenóis , Uruguai
8.
Cell Physiol Biochem ; 27(3-4): 305-12, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21471720

RESUMO

BACKGROUND: Recent studies have assessed the direct effects of smoking on cardiac remodeling and function. However, the mechanisms of these alterations remain unknown. The aim of this study was to investigate de role of cardiac NADPH oxidase and antioxidant enzyme system on ventricular remodeling induced by tobacco smoke. METHODS: Male Wistar rats that weighed 200-230 g were divided into a control group (C) and an experimental group that was exposed to tobacco smoke for a period of two months (ETS). After the two-month exposure period, morphological, biochemical and functional analyses were performed. RESULTS: The myocyte cross-sectional area and left ventricle end-diastolic dimension was increased 16.2% and 33.7%, respectively, in the ETS group. The interstitial collagen volume fraction was also higher in ETS group compared to the controls. In addition to these morphological changes, the ejection fraction and fractional shortening were decreased in the ETS group. Importantly, these alterations were related to augmented heart oxidative stress, which was characterized by an increase in NADPH oxidase activity, increased levels of lipid hydroperoxide and depletion of antioxidant enzymes (e.g., catalase, superoxide dismutase and glutathione peroxidase). In addition, cardiac levels of IFN-γ, TNF-α and IL-10 were not different between the groups. CONCLUSION: Cardiac alterations that are induced by smoking are associated with increased NADPH oxidase activity, suggesting that this pathway plays a role in the ventricular remodeling induced by exposure to tobacco smoke.


Assuntos
NADPH Oxidases/metabolismo , Nicotiana , Fumaça/efeitos adversos , Remodelação Ventricular/fisiologia , Animais , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Ventrículos do Coração/fisiopatologia , Interferon gama/metabolismo , Interleucina-10/metabolismo , Peróxidos Lipídicos/metabolismo , Masculino , Miócitos Cardíacos/fisiologia , Estresse Oxidativo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Arch Biochem Biophys ; 484(2): 197-204, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19402212

RESUMO

Mechanisms regulating NADPH oxidase remain open and include the redox chaperone protein disulfide isomerase (PDI). Here, we further investigated PDI effects on vascular NADPH oxidase. VSMC transfected with wild-type PDI (wt-PDI) or PDI mutated in all four redox cysteines (mut-PDI) enhanced (2.5-fold) basal cellular ROS production and membrane NADPH oxidase activity, with 3-fold increase in Nox1, but not Nox4 mRNA. However, further ROS production, NADPH oxidase activity and Nox1 mRNA increase triggered by angiotensin-II (AngII) were totally lost with PDI overexpression, suggesting preemptive Nox1 activation in such cells. PDI overexpression increased Nox4 mRNA after AngII stimulus, although without parallel ROS increase. We also show that Nox inhibition by the nitric oxide donor GSNO is independent of PDI. PDI silencing decreased specifically Nox1 mRNA and protein, confirming that PDI may regulate Nox1 at transcriptional level in VSMC. Such data further strengthen the role of PDI as novel NADPH oxidase regulator.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , NADPH Oxidases/metabolismo , Compostos Nitrosos/farmacologia , Isomerases de Dissulfetos de Proteínas/genética , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/enzimologia , Células Cultivadas , Endotélio Vascular/enzimologia , Humanos , Músculo Liso Vascular/efeitos dos fármacos , NADPH Oxidase 1 , NADPH Oxidases/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , RNA Mensageiro/genética , Compostos de Sulfidrila/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transfecção
10.
Cancer Chemother Pharmacol ; 55(6): 565-76, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15726368

RESUMO

A cholesterol-rich microemulsion or nanoparticle termed LDE concentrates in cancer tissues after injection into the bloodstream. Here the cytotoxicity, pharmacokinetics, toxicity to animals and therapeutic action of a paclitaxel lipophilic derivative associated to LDE is compared with those of the commercial paclitaxel. Results show that LDE-paclitaxel oleate is stable. The cytostatic activity of the drug in the complex is diminished compared with the commercial paclitaxel due to the cytotoxicity of the vehicle Cremophor EL used in the commercial formulation. Competition experiments in neoplastic cultured cells show that paclitaxel oleate and LDE are internalized together by the LDL receptor pathway. LDE-paclitaxel oleate arrests the G(2)/M phase of cell cycle, similarly to commercial paclitaxel. Tolerability to mice is remarkable, such that the lethal dose (LD(50)) was ninefold greater than that of the commercial formulation (LD(50) = 326 microM and 37 microM, respectively). LDE concentrates paclitaxel oleate in the tumor roughly fourfold relative to the normal adjacent tissues. At equimolar doses, the association of paclitaxel oleate with LDE results in remarkable changes in the drug pharmacokinetic parameters when compared to commercial paclitaxel (t(1/2)=218 min and 184 min, AUC=1,334 microg h/ml and 707 microg h/ml and CL=0.125 ml/min and 0.236 ml/min, respectively). Finally, the therapeutic efficacy of the complex is pronouncedly greater than that of the commercial paclitaxel, as indicated by the reduction in tumor growth, increase in survival rates and % cure of treated mice. In conclusion, LDE-paclitaxel oleate is a stable complex and compared with paclitaxel toxicity is considerably reduced and activity is enhanced, which may lead to improved therapeutic index in clinical use.


Assuntos
Antineoplásicos Fitogênicos , Colesterol/química , Portadores de Fármacos/química , Melanoma Experimental/tratamento farmacológico , Paclitaxel , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estabilidade de Medicamentos , Emulsões , Humanos , Dose Letal Mediana , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Nanoestruturas , Transplante de Neoplasias , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/uso terapêutico , Paclitaxel/toxicidade , Receptores de LDL/metabolismo , Relação Estrutura-Atividade
11.
Free Radic Biol Med ; 38(2): 189-200, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15607902

RESUMO

Tempol has been shown to protect experimental animals from injuries associated with excessive nitric oxide production. In parallel, tempol decreased the levels of protein-3-nitrotyrosine in the injured tissues, suggesting that it interacted with nitric oxide-derived oxidants such as nitrogen dioxide and peroxynitrite. Relevantly, a few recent studies have shown that tempol catalytically diverts peroxynitrite/carbon dioxide reactivity toward phenol from nitration to nitrosation. To examine whether this shift occurs in biological environments, we studied the effects of tempol (10-100 microM) on peroxynitrite/carbon dioxide (1 mM/2 mM) reactivity toward proteins, native bovine serum albumin (BSA) (0.5-0.7 cys/mol) and reductively denatured BSA (7-19 cys/mol), and cells (J774 macrophages). Although not a true catalyst, tempol strongly inhibited protein-tyrosine nitration (70-90%) and protein-cysteine oxidation (20-50%) caused by peroxynitrite/carbon dioxide in BSA, denatured BSA, and cells while increasing protein-cysteine nitrosation (200-400%). Tempol consumption was attributed mainly to its reaction with protein-cysteinyl radicals. Most of the tempol, however, reacted with the radicals produced from peroxynitrite/carbon dioxide, that is, nitrogen dioxide and carbonate radical anion. Accordingly, tempol decreased the yields of BSA-cysteinyl and BSA-tyrosyl/tryptophanyl radicals, as well their decay products such as protein-3-nitrotyrosine. The parallel increase in protein-nitrosocysteine yields demonstrated that part of the peroxynitrite is oxidized to nitric oxide by the oxammonium cation produced from tempol oxidation by peroxynitrite/carbon dioxide-derived radicals. Protein-nitrosocysteine formation was shown to occur by radical and nonradical mechanisms in studies with a protein-cysteinyl radical trapper. These studies may contribute to the understanding of the protective effects of tempol in animal models of inflammation.


Assuntos
Albuminas/metabolismo , Óxidos N-Cíclicos/farmacologia , Cisteína/química , Nitrogênio/química , Tirosina/análogos & derivados , Tirosina/química , Animais , Antioxidantes/farmacologia , Catálise , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Sequestradores de Radicais Livres/farmacologia , Radicais Livres , Immunoblotting , Imuno-Histoquímica , Inflamação , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Modelos Químicos , Óxido Nítrico/química , Nitritos/química , Oxigênio/química , Ácido Peroxinitroso/química , Soroalbumina Bovina/química , Marcadores de Spin , Fatores de Tempo
12.
Biochemistry ; 43(2): 344-51, 2004 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-14717588

RESUMO

The peroxidase activity of Cu,Zn-superoxide dismutase (Cu,Zn-SOD) has been extensively studied in recent years due to its potential relationship to familial amyotrophic lateral sclerosis. The mechanism by which Cu,Zn-SOD/hydrogen peroxide/bicarbonate is able to oxidize substrates has been proposed to be dependent on an oxidant whose nature, diffusible carbonate radical anion or enzyme-bound peroxycarbonate, remains debatable. One possibility to distinguish these species is to examine whether protein targets are oxidized to protein radicals. Here, we used EPR methodologies to study bovine serum albumin (BSA) oxidation by Cu,Zn-SOD/hydrogen peroxide in the absence and presence of bicarbonate or nitrite. The results showed that BSA oxidation in the presence of bicarbonate or nitrite at pH 7.4 produced mainly solvent-exposed and -unexposed BSA-tyrosyl radicals, respectively. Production of the latter was shown to be preceded by BSA-cysteinyl radical formation. The results also showed that hydrogen peroxide/bicarbonate extensively oxidized BSA-cysteine to the corresponding sulfenic acid even in the absence of Cu,Zn-SOD. Thus, our studies support the idea that peroxycarbonate acts as a two-electron oxidant and may be an important biological mediator. Overall, the results prove the diffusible and radical nature of the oxidants produced during the peroxidase activity of Cu,Zn-SOD in the presence of bicarbonate or nitrite.


Assuntos
Bicarbonatos/química , Cisteína/química , Radicais Livres/química , Nitritos/química , Peroxidase/química , Soroalbumina Bovina/química , Solventes/química , Superóxido Dismutase/química , Tirosina/química , Antioxidantes/química , Difusão , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Cinética , Oxidantes/química , Oxirredução , Detecção de Spin , Compostos de Sulfidrila/química
13.
J Pharm Pharmacol ; 55(12): 1615-22, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14738586

RESUMO

A cholesterol-rich microemulsion (LDE) that binds to low-density lipoprotein (LDL) receptors is selectively taken up by malignant cells that overexpress those receptors and may be used as vehicle for antineoplastic agents. This study aimed to develop the association of etoposide with LDE. It was firstly observed that etoposide poorly associates with the microemulsion, therefore the experiments were performed with a lipophilic fatty acid derivative of the drug. The association of etoposide oleate with LDE was almost 100% and was tested for physical and chemical stability, as well as for cellular uptake, toxicity in mice and cytotoxic activity against a neoplastic cell line (NCI-H292). Uptake and cytotoxic activity of LDE-etoposide oleate by NCI-H292 cells was mediated by LDL receptors. The anti-proliferative activity of LDE-etoposide oleate against the neoplastic cells was smaller than that of etoposide oleate (IC50 (drug concentration required to inhibit 50% of the cell growth) = 0.48 and 0.19 mM, respectively). This difference, however, can be ascribed to the activity of the commercially used vehicle and not the drug itself because when this vehicle was added to the cultures with LDE-etoposide oleate, the IC50 decreased. On the other hand, the tolerability of LDE-etoposide oleate to mice was remarkable, such that its lethal dose (LD50) was about five-fold that of the commercial formulation (LD50 = 315 and 58 mg kg(-1), respectively). In conclusion, LDE-etoposide oleate association is stable and the cytostatic activity of the drug is preserved while its toxicity to animals is small. By diminishing the side effects and directing etoposide to neoplastic tissues, LDE may be regarded as an advance in chemotherapy with this drug.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma de Células Pequenas/tratamento farmacológico , Etoposídeo/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Receptores de LDL/metabolismo , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/toxicidade , Cromatografia Líquida de Alta Pressão , Emulsões , Etoposídeo/química , Etoposídeo/toxicidade , Dose Letal Mediana , Camundongos , Camundongos Endogâmicos C57BL , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA